

Home Office

Analytical Technology, Inc. 6 Iron Bridge Drive Collegeville, PA 19426

Ph:(800) 959-0299 (610) 917-0991 Fax: (610) 917-0992 Email: <u>sales@analyticaltechnology.com</u>

#### European Office

ATI (UK) Limited Unit 1 & 2 Gatehead Business Park Delph New Road, Delph Saddleworth Ph: 0800-018-4020 + 44 (0) 1457-873-318 Fax: + 44 (0) 1457-874-468 Email:sales@atiuk.com

# Product Warranty

Analytical Technology, Inc. (Manufacturer) warrants to the Customer that if any part(s) of the Manufacturer's products prove to be defective in materials or workmanship within the earlier of 18 months after the date of shipment or 12 months after the date of startup, such defective parts will be repaired or replaced free of charge. Inspection and repairs to products thought to be defective within the warranty period will be completed at the Manufacturer's facilities in Collegeville, PA. Products on which warranty repairs are required shall be shipped freight prepaid to the Manufacturer. The product(s) will be returned freight prepaid if it is determined by the manufacturer that the part(s) failed due to defective materials or workmanship.

This warranty does not cover consumable items, batteries, or wear items subject to periodic replacement including lamps and fuses.

Gas sensors, except oxygen sensors, are covered by this warranty, but are subject to inspection for evidence of extended exposure to excessive gas concentrations. Should inspection indicate that sensors have been expended rather than failed prematurely, the warranty shall not apply.

The Manufacturer assumes no liability for consequential damages of any kind, and the buyer by acceptance of this equipment will assume all liability for the consequences of its use or misuse by the Customer, his employees, or others. A defect within the meaning of this warranty is any part of any piece of a Manufacturer's product, which shall, when such part is capable of being renewed, repaired, or replaced, operate to condemn such piece of equipment.

This warranty is in lieu of all other warranties (including without limiting the generality of the foregoing warranties of merchantability and fitness for a particular purpose), guarantees, obligations or liabilities expressed or implied by the Manufacturer or its representatives and by statute or rule of law.

This warranty is void if the Manufacturer's product(s) has been subject to misuse or abuse, or has not been operated or stored in accordance with instructions or if the serial number has been removed.

Analytical Technology, Inc. makes no other warranty expressed or implied except as stated above.

#### **Table of Contents**

| 1 INTI                                                                                                      | RODUCTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5                                                                          |
|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| 1.1<br>1.2<br>1.3<br>1.4                                                                                    | Components<br>F12 Gas Transmitter<br>H10 Smart Sensor and D18 Gas Generator .<br>Specifications                                                                                                                                                                                                                                                                                                                                                                                     | 5<br>5                                                                     |
| 2 MEC                                                                                                       | CHANICAL INSTALLATION                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9                                                                          |
| 2.1<br>2.2<br>2.3<br>2.4<br>2.5<br>2.6                                                                      | TRANSMITTER MOUNTING<br>ENCLOSURE DIMENSIONS<br>WALL AND PIPE MOUNTING<br>PANEL MOUNTING (REMOTE SYSTEMS ONLY)<br>DUCT SENSOR MOUNTING<br>GENERATOR INSTALLATION/REMOVAL                                                                                                                                                                                                                                                                                                            | 9<br>10<br>12<br>13                                                        |
| 3 ELEC                                                                                                      | CTRICAL CONNECTIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 16                                                                         |
| 3.1<br>3.2<br>3.3<br>3.4<br>3.5<br>3.6<br>3.7<br>3.8<br>3.9<br>3.10<br>3.11<br>3.12<br>3.13<br>3.14<br>3.15 | TRANSMITTER CONNECTIONS<br>SENSOR ADAPTER BOARD<br>POWER SUPPLY BOARD<br>COMMUNICATION INTERFACE JUMPER, JP2<br>HEATED SENSOR HOUSING WIRING (INTERGRAL) .<br>REMOTE SENSOR WIRING WIRING (INTERGRAL) .<br>DUCT MOUNT SENSOR WIRING<br>DUCT MOUNT SENSOR WIRING<br>SENSOR CONNECTION W/6 FT. CABLE<br>ALARM RELAY BOARDS (OPTION)<br>AC POWERED ALARM RELAY BOARD (OPTION)<br>DC POWERED ALARM RELAY BOARD (OPTION)<br>RELAY CONFIGURATION<br>REMOTE RESET INPUT<br>WIRING EXAMPLES | 17<br>18<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>26<br>27<br>27<br>28 |

|   | 3.16 | AC POWERED ALARM RELAY BOARD WIRING       | 31  |
|---|------|-------------------------------------------|-----|
|   | 3.17 | DC POWERED ALARM RELAY BOARD WIRING       | 32  |
|   | 3.18 | HART TRANSMITTER, POINT-TO-POINT (2-WIRE) | .34 |
| 4 | OPE  | RATION                                    | 35  |
|   | 4.1  | INTERFACE PANEL                           | .35 |
|   | 4.2  | STARTUP REVIEW SEQUENCE                   | .36 |
|   | 4.3  | FIVE-MINUTE TIME-OUT                      |     |
|   | 4.4  | FAULT INDICATION (MAIN DISPLAY PAGE)      |     |
|   | 4.5  | VARIABLE EDITING                          |     |
|   | 4.6  | SENSORS AND GENERATORS                    |     |
|   | 4.7  | CHANGING SENSORS AND GENERATORS           | .41 |
|   | 4.8  | BUMP-TESTING                              | .43 |
|   | 4.9  | CALIBRATION                               | .44 |
|   | 4.10 | ZERO CALIBRATION PROCEDURE                | .45 |
|   | 4.11 | SPAN CALIBRATION PROCEDURE                | 46  |
|   | 4.12 | CALIBRATION OF DUCT-MOUNT H10 SENSORS     | 47  |
|   | 4.13 | SENSOR CALIBRATION RECORDS                | .48 |
|   | 4.14 | Auto-test                                 | 49  |
|   | 4.15 | Alarms and Relays                         | 54  |
|   | 4.16 | 4-20мА Оцтрит                             | 64  |
|   | 4.17 | DATA-LOG                                  | .66 |
|   | 4.18 | DISPLAY                                   | .69 |
|   | 4.19 | System                                    | .70 |
|   | 4.20 | COMMUNICATIONS                            | .73 |
| 5 | SPA  | RE PARTS                                  | 78  |
| 6 | APP  | ENDIX A                                   | 81  |
|   | 6.1  | PRINTING DATA LOG REPORTS                 | 81  |
|   | 6.2  | Example: Charting a Data Log Report       |     |

# Table of Figures

| FIGURE 1. TRANSMITTER, SENSOR, AND OPTIONAL GAS GENERATOR 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FIGURE 2. ENCLOSURE DIMENSIONS, STANDARD ENCLOSURE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| FIGURE 3. ENCLOSURE DIMENSIONS, DEEP ENCLOSURE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| FIGURE 4. WALL/PIPE MOUNTING BRACKET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| FIGURE 5. WALL MOUNTING DIAGRAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| FIGURE 6. PIPE MOUNTING DIAGRAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| FIGURE 7. PANEL MOUNTING DETAILS [DEEP CASE]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| FIGURE 8. DUCT-MOUNT SENSOR HOLDER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| FIGURE 9 DUCT MOUNT SENSOR EXPLODED VIEW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Figure 11. DUCT-MOUNT ADAPTER (ATT-0070)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| FIGURE 12 - GENERATOR EXPLODED VIEW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Figure 13. F12 Transmitter Configurations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| FIGURE 14. SENSOR ADAPTER BOARD WIRING W/O AUTOTEST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| GENERATOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| FIGURE 15. SENSOR ADAPTER BOARD WIRING W/ AUTOTEST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| GENERATOR POWER AND COMMUNICATION TERMINALS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| FIGURE 16. POWER AND COMMUNICATION TERMINALS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| FIGURE 17. POWER SUPPLY BOARD (SENSOR ADAPTER REMOVED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| FOR CLARITY)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| FIGURE 18 - HEATED SENSOR WIRING DIAGRAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| FIGURE 19. REMOTE SENSOR WIRING W/OPTIONAL AUTO-TEST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| GENERATOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| FIGURE 20. REMOTE HEATED SENSOR WIRING DIAGRAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| FIGURE 21 - DUCT MOUNT SENSOR WIRING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| FIGURE 22 - WIRING CONNECTIONS - 6FT. SENSOR CABLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| FIGURE 23 - AC POWERED ALARM RELAY BOARD AND COVER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| FIGURE 24 - DC POWERED ALARM RELAY BOARD AND COVER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| FIGURE 25 - RELAY CONFIGURATION JUMPER LOCATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| FIGURE 26 – REMOTE RESET INPUT28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| FIGURE 27 - ATI A17/B14 RECEIVER MODULES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| FIGURE 28 - RS485 MULTIDROP NETWORK WITH 4-20MA SIGNALING30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| FIGURE 29 - RS485 MULTIDROP NETWORK W/O 4-20MA SIGNALING 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| FIGURE 30 - AC POWERED ALARM RELAY BOARD WIRING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| FIGURE 31 - DC POWERED ALARM RELAY BOARD WIRING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| FIGURE 31 - DC POWERED ALARM RELAY BOARD WIRING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| FIGURE 31 - DC POWERED ALARM RELAY BOARD WIRING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| FIGURE 31 - DC POWERED ALARM RELAY BOARD WIRING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| FIGURE 31 - DC POWERED ALARM RELAY BOARD WIRING32FIGURE 32 - RELAY OPTION WIRING (NON-LOOP POWER DEVICES)33FIGURE 33 - HART TRANSMITTER, POINT-TO-POINT (2-WIRE)34FIGURE 34 - OPERATOR INTERFACE PANEL35FIGURE 35 - STARTUP REVIEW SEQUENCE MAIN DISPLAY PAGE36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| FIGURE 31 - DC POWERED ALARM RELAY BOARD WIRING 32   FIGURE 32 - RELAY OPTION WIRING (NON-LOOP POWER DEVICES)33   FIGURE 33 - HART TRANSMITTER, POINT-TO-POINT (2-WIRE)   34   FIGURE 34 - OPERATOR INTERFACE PANEL   35   FIGURE 35 - STARTUP REVIEW SEQUENCE MAIN DISPLAY PAGE.   36   FIGURE 36 - MAIN DISPLAY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| FIGURE 31 - DC POWERED ALARM RELAY BOARD WIRING 32   FIGURE 32 - RELAY OPTION WIRING (NON-LOOP POWER DEVICES)33   FIGURE 33 - HART TRANSMITTER, POINT-TO-POINT (2-WIRE) 34   FIGURE 34 - OPERATOR INTERFACE PANEL 35   FIGURE 35 - STARTUP REVIEW SEQUENCE MAIN DISPLAY PAGE. 36   FIGURE 36 - MAIN DISPLAY 37   FIGURE 37 - STANDARD FAULT INDICATION MAIN READING. 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| FIGURE 31 - DC POWERED ALARM RELAY BOARD WIRING32FIGURE 32 - RELAY OPTION WIRING (NON-LOOP POWER DEVICES).33FIGURE 33 - HART TRANSMITTER, POINT-TO-POINT (2-WIRE)34FIGURE 34 - OPERATOR INTERFACE PANEL35FIGURE 35 - STARTUP REVIEW SEQUENCE MAIN DISPLAY PAGE.36FIGURE 36 - MAIN DISPLAY37FIGURE 37 - STANDARD FAULT INDICATION MAIN READING.37FIGURE 38 - VARIABLE EDITING.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| FIGURE 31 - DC POWERED ALARM RELAY BOARD WIRING32FIGURE 32 - RELAY OPTION WIRING (NON-LOOP POWER DEVICES)33FIGURE 33 - HART TRANSMITTER, POINT-TO-POINT (2-WIRE)34FIGURE 34 - OPERATOR INTERFACE PANEL35FIGURE 35 - STARTUP REVIEW SEQUENCE MAIN DISPLAY PAGE.36FIGURE 36 - MAIN DISPLAY37FIGURE 37 - STANDARD FAULT INDICATION MAIN READING.37FIGURE 38 - VARIABLE EDITING.39FIGURE 39 - SENSOR SETUP PAGE.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| FIGURE 31 - DC POWERED ALARM RELAY BOARD WIRING 32   FIGURE 32 - RELAY OPTION WIRING (NON-LOOP POWER DEVICES)33   FIGURE 33 - HART TRANSMITTER, POINT-TO-POINT (2-WIRE) 34   FIGURE 34 - OPERATOR INTERFACE PANEL 35   FIGURE 35 - STARTUP REVIEW SEQUENCE MAIN DISPLAY PAGE. 36   FIGURE 36 - MAIN DISPLAY 37   FIGURE 37 - STANDARD FAULT INDICATION MAIN READING. 37   FIGURE 38 - VARIABLE EDITING 39   FIGURE 39 - SENSOR SETUP PAGE. 40   FIGURE 40 - DATA-LOG WARNING PAGE 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| FIGURE 31 - DC POWERED ALARM RELAY BOARD WIRING 32   FIGURE 32 - RELAY OPTION WIRING (NON-LOOP POWER DEVICES)33   FIGURE 33 - HART TRANSMITTER, POINT-TO-POINT (2-WIRE) 34   FIGURE 34 - OPERATOR INTERFACE PANEL 35   FIGURE 35 - STARTUP REVIEW SEQUENCE MAIN DISPLAY PAGE. 36   FIGURE 36 - MAIN DISPLAY 37   FIGURE 37 - STANDARD FAULT INDICATION MAIN READING. 37   FIGURE 38 - VARIABLE EDITING 39   FIGURE 39 - SENSOR SETUP PAGE. 40   FIGURE 40 - DATA-LOG WARNING PAGE 40   FIGURE 41 - SENSOR "MORE" PAGE. 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| FIGURE 31 - DC POWERED ALARM RELAY BOARD WIRING32FIGURE 32 - RELAY OPTION WIRING (NON-LOOP POWER DEVICES)33FIGURE 33 - HART TRANSMITTER, POINT-TO-POINT (2-WIRE)34FIGURE 34 - OPERATOR INTERFACE PANEL35FIGURE 35 - STARTUP REVIEW SEQUENCE MAIN DISPLAY PAGE.36FIGURE 36 - MAIN DISPLAY37FIGURE 37 - STANDARD FAULT INDICATION MAIN READING.37FIGURE 38 - VARIABLE EDITING39FIGURE 39 - SENSOR SETUP PAGE.40FIGURE 40 - DATA-LOG WARNING PAGE41FIGURE 41 - SENSOR "MORE" PAGE41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| FIGURE 31 - DC POWERED ALARM RELAY BOARD WIRING 32   FIGURE 32 - RELAY OPTION WIRING (NON-LOOP POWER DEVICES)33   FIGURE 33 - HART TRANSMITTER, POINT-TO-POINT (2-WIRE) 34   FIGURE 34 - OPERATOR INTERFACE PANEL 35   FIGURE 35 - STARTUP REVIEW SEQUENCE MAIN DISPLAY PAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| FIGURE 31 - DC POWERED ALARM RELAY BOARD WIRING32FIGURE 32 - RELAY OPTION WIRING (NON-LOOP POWER DEVICES)33FIGURE 33 - HART TRANSMITTER, POINT-TO-POINT (2-WIRE)34FIGURE 34 - OPERATOR INTERFACE PANEL35FIGURE 35 - STARTUP REVIEW SEQUENCE MAIN DISPLAY PAGE.36FIGURE 36 - MAIN DISPLAY37FIGURE 37 - STANDARD FAULT INDICATION MAIN READING.37FIGURE 38 - VARIABLE EDITING39FIGURE 39 - SENSOR SETUP PAGE.40FIGURE 40 - DATA-LOG WARNING PAGE40FIGURE 41 - SENSOR "MORE" PAGE.41FIGURE 42 - SENSOR REMOVAL PAGE41FIGURE 43 - CLEAR DATA LOG PAGE42FIGURE 44 - GENERATOR REMOVAL42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| FIGURE 31 - DC POWERED ALARM RELAY BOARD WIRING32FIGURE 32 - RELAY OPTION WIRING (NON-LOOP POWER DEVICES)33FIGURE 33 - HART TRANSMITTER, POINT-TO-POINT (2-WIRE)34FIGURE 34 - OPERATOR INTERFACE PANEL35FIGURE 35 - STARTUP REVIEW SEQUENCE MAIN DISPLAY PAGE.36FIGURE 36 - MAIN DISPLAY37FIGURE 37 - STANDARD FAULT INDICATION MAIN READING.37FIGURE 38 - VARIABLE EDITING39FIGURE 40 - DATA-LOG WARNING PAGE40FIGURE 41 - SENSOR "MORE" PAGE.41FIGURE 42 - SENSOR REMOVAL PAGE41FIGURE 43 - CLEAR DATA LOG PAGE42FIGURE 44 - GENERATOR REMOVAL42FIGURE 45 - ZERO CALIBRATION45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| FIGURE 31 - DC POWERED ALARM RELAY BOARD WIRING32FIGURE 32 - RELAY OPTION WIRING (NON-LOOP POWER DEVICES)33FIGURE 33 - HART TRANSMITTER, POINT-TO-POINT (2-WIRE)34FIGURE 34 - OPERATOR INTERFACE PANEL35FIGURE 35 - STARTUP REVIEW SEQUENCE MAIN DISPLAY PAGE.36FIGURE 36 - MAIN DISPLAY37FIGURE 37 - STANDARD FAULT INDICATION MAIN READING.37FIGURE 38 - VARIABLE EDITING39FIGURE 39 - SENSOR SETUP PAGE.40FIGURE 40 - DATA-LOG WARNING PAGE40FIGURE 41 - SENSOR "MORE" PAGE.41FIGURE 42 - SENSOR REMOVAL PAGE41FIGURE 43 - CLEAR DATA LOG PAGE42FIGURE 44 - GENERATOR REMOVAL42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| FIGURE 31 - DC POWERED ALARM RELAY BOARD WIRING32FIGURE 32 - RELAY OPTION WIRING (NON-LOOP POWER DEVICES)33FIGURE 33 - HART TRANSMITTER, POINT-TO-POINT (2-WIRE)34FIGURE 34 - OPERATOR INTERFACE PANEL35FIGURE 35 - STARTUP REVIEW SEQUENCE MAIN DISPLAY PAGE.36FIGURE 36 - MAIN DISPLAY37FIGURE 37 - STANDARD FAULT INDICATION MAIN READING.37FIGURE 38 - VARIABLE EDITING39FIGURE 40 - DATA-LOG WARNING PAGE40FIGURE 41 - SENSOR "MORE" PAGE.41FIGURE 42 - SENSOR REMOVAL PAGE41FIGURE 43 - CLEAR DATA LOG PAGE42FIGURE 44 - GENERATOR REMOVAL42FIGURE 45 - ZERO CALIBRATION45FIGURE 46 - ZERO SENSOR PAGE45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| FIGURE 31 - DC POWERED ALARM RELAY BOARD WIRING 32   FIGURE 32 - RELAY OPTION WIRING (NON-LOOP POWER DEVICES)33   FIGURE 33 - HART TRANSMITTER, POINT-TO-POINT (2-WIRE) 34   FIGURE 34 - OPERATOR INTERFACE PANEL 35   FIGURE 35 - STARTUP REVIEW SEQUENCE MAIN DISPLAY PAGE. 36   FIGURE 36 - MAIN DISPLAY 37   FIGURE 37 - STANDARD FAULT INDICATION MAIN READING. 37   FIGURE 38 - VARIABLE EDITING 39   FIGURE 40 - DATA-LOG WARNING PAGE 40   FIGURE 41 - SENSOR "MORE" PAGE 41   FIGURE 42 - SENSOR REMOVAL PAGE 41   FIGURE 43 - CLEAR DATA LOG PAGE 42   FIGURE 44 - GENERATOR REMOVAL 42   FIGURE 45 - ZERO CALIBRATION 45   FIGURE 46 - ZERO SENSOR PAGE 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| FIGURE 31 - DC POWERED ALARM RELAY BOARD WIRING32FIGURE 32 - RELAY OPTION WIRING (NON-LOOP POWER DEVICES)33FIGURE 33 - HART TRANSMITTER, POINT-TO-POINT (2-WIRE)34FIGURE 34 - OPERATOR INTERFACE PANEL35FIGURE 35 - STARTUP REVIEW SEQUENCE MAIN DISPLAY PAGE36FIGURE 36 - MAIN DISPLAY37FIGURE 37 - STANDARD FAULT INDICATION MAIN READING37FIGURE 38 - VARIABLE EDITING39FIGURE 39 - SENSOR SETUP PAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| FIGURE 31 - DC POWERED ALARM RELAY BOARD WIRING32FIGURE 32 - RELAY OPTION WIRING (NON-LOOP POWER DEVICES)33FIGURE 33 - HART TRANSMITTER, POINT-TO-POINT (2-WIRE)34FIGURE 34 - OPERATOR INTERFACE PANEL35FIGURE 35 - STARTUP REVIEW SEQUENCE MAIN DISPLAY PAGE3636FIGURE 36 - MAIN DISPLAY37FIGURE 37 - STANDARD FAULT INDICATION MAIN READING37FIGURE 38 - VARIABLE EDITING39FIGURE 39 - SENSOR SETUP PAGE4040FIGURE 40 - DATA-LOG WARNING PAGE40FIGURE 41 - SENSOR "MORE" PAGE41FIGURE 42 - SENSOR REMOVAL PAGE41FIGURE 43 - CLEAR DATA LOG PAGE42FIGURE 44 - GENERATOR REMOVAL42FIGURE 45 - ZERO CALIBRATION45FIGURE 47 - SPAN CALIBRATION46FIGURE 48 - SPAN SENSOR PAGE46FIGURE 49 - CALIBRATION OF DUCT-MOUNT SENSORS                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| FIGURE 31 - DC POWERED ALARM RELAY BOARD WIRING32FIGURE 32 - RELAY OPTION WIRING (NON-LOOP POWER DEVICES)33FIGURE 33 - HART TRANSMITTER, POINT-TO-POINT (2-WIRE)34FIGURE 34 - OPERATOR INTERFACE PANEL35FIGURE 35 - STARTUP REVIEW SEQUENCE MAIN DISPLAY PAGE36FIGURE 36 - MAIN DISPLAY37FIGURE 37 - STANDARD FAULT INDICATION MAIN READING37FIGURE 38 - VARIABLE EDITINGFIGURE 39 - SENSOR SETUP PAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| FIGURE 31 - DC POWERED ALARM RELAY BOARD WIRING32FIGURE 32 - RELAY OPTION WIRING (NON-LOOP POWER DEVICES)33FIGURE 33 - HART TRANSMITTER, POINT-TO-POINT (2-WIRE)34FIGURE 34 - OPERATOR INTERFACE PANEL35FIGURE 35 - STARTUP REVIEW SEQUENCE MAIN DISPLAY PAGE36FIGURE 36 - MAIN DISPLAY37FIGURE 37 - STANDARD FAULT INDICATION MAIN READING37FIGURE 38 - VARIABLE EDITING39FIGURE 39 - SENSOR SETUP PAGE4040FIGURE 40 - DATA-LOG WARNING PAGE40FIGURE 41 - SENSOR "MORE" PAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| FIGURE 31 - DC POWERED ALARM RELAY BOARD WIRING32FIGURE 32 - RELAY OPTION WIRING (NON-LOOP POWER DEVICES)33FIGURE 33 - HART TRANSMITTER, POINT-TO-POINT (2-WIRE)34FIGURE 34 - OPERATOR INTERFACE PANEL35FIGURE 35 - STARTUP REVIEW SEQUENCE MAIN DISPLAY PAGE36FIGURE 36 - MAIN DISPLAY37FIGURE 37 - STANDARD FAULT INDICATION MAIN READING37FIGURE 38 - VARIABLE EDITING39FIGURE 39 - SENSOR SETUP PAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| FIGURE 31 - DC POWERED ALARM RELAY BOARD WIRING32FIGURE 32 - RELAY OPTION WIRING (NON-LOOP POWER DEVICES)33FIGURE 33 - HART TRANSMITTER, POINT-TO-POINT (2-WIRE)34FIGURE 34 - OPERATOR INTERFACE PANEL35FIGURE 35 - STARTUP REVIEW SEQUENCE MAIN DISPLAY PAGE36FIGURE 36 - MAIN DISPLAY37FIGURE 37 - STANDARD FAULT INDICATION MAIN READING37FIGURE 38 - VARIABLE EDITING39FIGURE 39 - SENSOR SETUP PAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| FIGURE 31 - DC POWERED ALARM RELAY BOARD WIRING32FIGURE 32 - RELAY OPTION WIRING (NON-LOOP POWER DEVICES)33FIGURE 33 - HART TRANSMITTER, POINT-TO-POINT (2-WIRE)34FIGURE 34 - OPERATOR INTERFACE PANEL35FIGURE 35 - STARTUP REVIEW SEQUENCE MAIN DISPLAY PAGE36FIGURE 36 - MAIN DISPLAY37FIGURE 37 - STANDARD FAULT INDICATION MAIN READING.37FIGURE 38 - VARIABLE EDITING39FIGURE 40 - DATA-LOG WARNING PAGE40FIGURE 41 - SENSOR SETUP PAGE41FIGURE 42 - SENSOR REMOVAL PAGE41FIGURE 43 - CLEAR DATA LOG PAGE42FIGURE 44 - GENERATOR REMOVAL42FIGURE 45 - ZERO CALIBRATION45FIGURE 47 - SPAN CALIBRATION46FIGURE 48 - SPAN SENSOR PAGE46FIGURE 49 - CALIBRATION OF DUCT-MOUNT SENSORS.47FIGURE 50 - SENSOR CALIBRATION HISTORY PAGE50FIGURE 51 - AUTO-TEST SETUP PAGE50FIGURE 52 - AUTO-TEST HISTORY PAGE51FIGURE 55 - AUTO-TEST HISTORY PAGE52FIGURE 56 - GAS GENERATOR INFORMATION PAGE52                                                                                                                                                                                                                                                                         |
| FIGURE 31 - DC POWERED ALARM RELAY BOARD WIRING32FIGURE 32 - RELAY OPTION WIRING (NON-LOOP POWER DEVICES)33FIGURE 33 - HART TRANSMITTER, POINT-TO-POINT (2-WIRE)34FIGURE 34 - OPERATOR INTERFACE PANEL35FIGURE 35 - STARTUP REVIEW SEQUENCE MAIN DISPLAY PAGE36FIGURE 36 - MAIN DISPLAY37FIGURE 37 - STANDARD FAULT INDICATION MAIN READING.37FIGURE 38 - VARIABLE EDITING39FIGURE 40 - DATA-LOG WARNING PAGE40FIGURE 41 - SENSOR SETUP PAGE.41FIGURE 42 - SENSOR REMOVAL PAGE41FIGURE 43 - CLEAR DATA LOG PAGE42FIGURE 44 - GENERATOR REMOVAL42FIGURE 45 - ZERO CALIBRATION45FIGURE 47 - SPAN CALIBRATION46FIGURE 48 - SPAN SENSOR PAGE46FIGURE 49 - CALIBRATION OF DUCT-MOUNT SENSORS.47FIGURE 50 - SENSOR CALIBRATION HISTORY PAGE50FIGURE 51 - AUTO-TEST SETUP PAGE50FIGURE 54 - NEXTAT PAGE51FIGURE 56 - GAS GENERATOR INFORMATION PAGE52FIGURE 56 - GAS GENERATOR INFORMATION PAGE52FIGURE 56 - GAS GENERATOR INFORMATION PAGE52FIGURE 56 - AUTO-TEST SEQUENCE PAGES53                                                                                                                                                                                         |
| FIGURE 31 - DC POWERED ALARM RELAY BOARD WIRING32FIGURE 32 - RELAY OPTION WIRING (NON-LOOP POWER DEVICES)33FIGURE 33 - HART TRANSMITTER, POINT-TO-POINT (2-WIRE)34FIGURE 34 - OPERATOR INTERFACE PANEL35FIGURE 35 - STARTUP REVIEW SEQUENCE MAIN DISPLAY PAGE36FIGURE 36 - MAIN DISPLAY37FIGURE 37 - STANDARD FAULT INDICATION MAIN READING.37FIGURE 39 - SENSOR SETUP PAGE40FIGURE 40 - DATA-LOG WARNING PAGE40FIGURE 41 - SENSOR "MORE" PAGE41FIGURE 42 - SENSOR REMOVAL PAGE41FIGURE 43 - CLEAR DATA LOG PAGE42FIGURE 44 - GENERATOR REMOVAL42FIGURE 45 - ZERO CALIBRATION45FIGURE 46 - ZERO SENSOR PAGE46FIGURE 47 - SPAN CALIBRATION46FIGURE 48 - SPAN SENSOR PAGE46FIGURE 49 - CALIBRATION OF DUCT-MOUNT SENSORS47FIGURE 50 - SENSOR CALIBRATION HISTORY PAGE50FIGURE 51 - AUTO-TEST SETUP PAGE50FIGURE 52 - AUTO-TEST SETUP PAGE50FIGURE 54 - NEXTAT PAGE51FIGURE 55 - AUTO-TEST HISTORY PAGE51FIGURE 56 - GAS GENERATOR INFORMATION PAGE52FIGURE 57 - AUTO-TEST SEQUENCE PAGES53FIGURE 57 - AUTO-TEST SEQUENCE PAGES53FIGURE 58 - PRIORITY FOR HIGH LEVEL (RISING) ALARMS54                                                                                  |
| FIGURE 31 - DC POWERED ALARM RELAY BOARD WIRING32FIGURE 32 - RELAY OPTION WIRING (NON-LOOP POWER DEVICES)33FIGURE 33 - HART TRANSMITTER, POINT-TO-POINT (2-WIRE)34FIGURE 34 - OPERATOR INTERFACE PANEL35FIGURE 35 - STARTUP REVIEW SEQUENCE MAIN DISPLAY PAGE36FIGURE 36 - MAIN DISPLAY37FIGURE 37 - STANDARD FAULT INDICATION MAIN READING.37FIGURE 39 - SENSOR SETUP PAGE40FIGURE 40 - DATA-LOG WARNING PAGE40FIGURE 41 - SENSOR "MORE" PAGE.41FIGURE 42 - SENSOR REMOVAL PAGE41FIGURE 43 - CLEAR DATA LOG PAGE42FIGURE 44 - GENERATOR REMOVAL42FIGURE 45 - ZERO CALIBRATION45FIGURE 46 - ZERO SENSOR PAGE46FIGURE 47 - SPAN CALIBRATION45FIGURE 48 - SPAN SENSOR PAGE46FIGURE 49 - CALIBRATION OF DUCT-MOUNT SENSORS47FIGURE 51 - AUTO-TEST CONTROL PAGE50FIGURE 52 - AUTO-TEST SETUP PAGE50FIGURE 53 - AUTO-TEST SETUP PAGE51FIGURE 54 - NEXTAT PAGE51FIGURE 55 - AUTO-TEST SETUP PAGE51FIGURE 56 - GAS GENERATOR INFORMATION PAGE52FIGURE 57 - AUTO-TEST SEQUENCE PAGES53FIGURE 57 - AUTO-TEST SEQUENCE PAGES53FIGURE 57 - AUTO-TEST SEQUENCE PAGES53FIGURE 57 - PRIORITY FOR HIGH LEVEL (RISING) ALARMS54FIGURE 59 - PRIORITY FOR LOW LEVEL (FAILING) ALARMS54 |
| FIGURE 31 - DC POWERED ALARM RELAY BOARD WIRING32FIGURE 32 - RELAY OPTION WIRING (NON-LOOP POWER DEVICES)33FIGURE 33 - HART TRANSMITTER, POINT-TO-POINT (2-WIRE)34FIGURE 34 - OPERATOR INTERFACE PANEL35FIGURE 35 - STARTUP REVIEW SEQUENCE MAIN DISPLAY PAGE3636FIGURE 36 - MAIN DISPLAY37FIGURE 37 - STANDARD FAULT INDICATION MAIN READING37FIGURE 38 - VARIABLE EDITING39FIGURE 39 - SENSOR SETUP PAGE4040FIGURE 40 - DATA-LOG WARNING PAGE40FIGURE 41 - SENSOR "MORE" PAGE41FIGURE 42 - SENSOR REMOVAL PAGE41FIGURE 43 - CLEAR DATA LOG PAGE42FIGURE 44 - GENERATOR REMOVAL42FIGURE 45 - ZERO CALIBRATION45FIGURE 47 - SPAN CALIBRATION45FIGURE 48 - SPAN SENSOR PAGE46FIGURE 49 - CALIBRATION OF DUCT-MOUNT SENSORS                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| FIGURE 31 - DC POWERED ALARM RELAY BOARD WIRING32FIGURE 32 - RELAY OPTION WIRING (NON-LOOP POWER DEVICES)33FIGURE 33 - HART TRANSMITTER, POINT-TO-POINT (2-WIRE)34FIGURE 34 - OPERATOR INTERFACE PANEL35FIGURE 35 - STARTUP REVIEW SEQUENCE MAIN DISPLAY PAGE36FIGURE 36 - MAIN DISPLAY37FIGURE 37 - STANDARD FAULT INDICATION MAIN READING.37FIGURE 39 - SENSOR SETUP PAGE40FIGURE 40 - DATA-LOG WARNING PAGE40FIGURE 41 - SENSOR "MORE" PAGE.41FIGURE 42 - SENSOR REMOVAL PAGE41FIGURE 43 - CLEAR DATA LOG PAGE42FIGURE 44 - GENERATOR REMOVAL42FIGURE 45 - ZERO CALIBRATION45FIGURE 46 - ZERO SENSOR PAGE46FIGURE 47 - SPAN CALIBRATION45FIGURE 48 - SPAN SENSOR PAGE46FIGURE 49 - CALIBRATION OF DUCT-MOUNT SENSORS47FIGURE 51 - AUTO-TEST CONTROL PAGE50FIGURE 52 - AUTO-TEST SETUP PAGE50FIGURE 53 - AUTO-TEST SETUP PAGE51FIGURE 54 - NEXTAT PAGE51FIGURE 55 - AUTO-TEST SETUP PAGE51FIGURE 56 - GAS GENERATOR INFORMATION PAGE52FIGURE 57 - AUTO-TEST SEQUENCE PAGES53FIGURE 57 - AUTO-TEST SEQUENCE PAGES53FIGURE 57 - AUTO-TEST SEQUENCE PAGES53FIGURE 57 - PRIORITY FOR HIGH LEVEL (RISING) ALARMS54FIGURE 59 - PRIORITY FOR LOW LEVEL (FAILING) ALARMS54 |

| FIGURE 62 - LOW LEVEL (FAILING) ALARM (ACTIVE = BELOW SP, |      |
|-----------------------------------------------------------|------|
| RESET = AUTO)                                             |      |
| FIGURE 63 - ALARM SETUP PAGES                             |      |
| FIGURE 64 - FAULT ALARM ON MAIN DISPLAY PAGE              |      |
| FIGURE 65 - FAULT PAGE                                    |      |
| FIGURE 66 - ALARM RELAY DIAGRAM (NORMAL RUNTIME STATE)    |      |
| FIGURE 67 - RELAYS SETUP PAGE (EXAMPLE)                   |      |
| FIGURE 68 - RELAY TEST PAGE (EXAMPLE)                     |      |
| FIGURE 69 - INHIBITING ALARMS FROM THE MAIN DISPLAY       |      |
| FIGURE 70 - ALARM INHIBIT SETUP PAGE                      |      |
| FIGURE 71 - CURRENT LOOP OUTPUT PLOT                      |      |
| FIGURE 72 - 4-20MA SETUP PAGE                             |      |
| FIGURE 73 - 4-20MA CONTROL PAGE                           |      |
| FIGURE 74 - LOOP ADJUSTMENT PAGES (DAC_VALUES SHOWN MAY   |      |
| NOT MATCH)                                                |      |
| FIGURE 75 - DATA LOG ACCESS PAGE                          |      |
| FIGURE 76 - DATA LOG SETUP PAGE                           |      |
| FIGURE 77 - DATA LOG GRAPHIC REPORT PAGE                  |      |
| FIGURE 78 - DATA LOG TABULAR REPORT PAGE                  |      |
| FIGURE 79 - DATA LOG PRINTOUT (EXAMPLE)                   |      |
| FIGURE 80 - DISPLAY SETUP PAGE                            |      |
| FIGURE 81 - SYSTEM ACCESS PAGE                            |      |
| FIGURE 82 - CLOCK SETUP PAGE                              |      |
| FIGURE 83 - SECURITY CONTROL PAGE                         |      |
| FIGURE 84 - ACTIVATING SECURITY                           |      |
| FIGURE 85 - DEACTIVATING SECURITY                         |      |
| FIGURE 86 - CHANGING THE PASSWORD                         |      |
| FIGURE 87 - COMMUNICATION SETUP PAGE                      |      |
| FIGURE 88 - HART SETUP PAGES                              |      |
| FIGURE 89 = HART A) FIND-ME AND B) DEVICE FOUND PAGES     | . 75 |
| FIGURE 90 - MODBUS SETUP PAGE                             |      |
| FIGURE 91 - TRANSMITTER VERSION PAGE                      |      |
| FIGURE 92 - SYSTEM RESET PAGE                             |      |
| FIGURE 93 - EXPLODED VIEW                                 |      |
| FIGURE 94 - RS232 COMMUNICATIONS WIRING                   | . 81 |
| FIGURE 95 - RS485 COMMUNICATION WIRING                    | . 81 |



#### 1.2 F12 Gas Transmitter

The F12 Gas Transmitter is used to monitor for gas leaks near storage cylinders, process piping, or gas feed equipment in nearly any type of industrial plant environment. It is housed in NEMA 4X, polycarbonate enclosure and features an H10 Smart Sensor, a non-intrusive four button user interface with a backlit transflective graphics display, three level alarms with three (optional) alarm

relays, a high-resolution 4-20mA current loop output, real-time clock, data-logger, and optional HART<sup>™</sup> or Modbus<sup>™</sup> communication interface. In addition, the transmitter offers several optional D18 gas generators for automatic, timed testing of H10 sensors.

#### 1.3 H10 Smart Sensor and D18 Gas Generator

H10 Smart Sensors and D18 generators contain nonvolatile memory to store information about the target gas they were designed to monitor, or generate. They contain general information about the target gas, such as the name, range, units, alarm settings, along with specific calibration information, such as response to gas, mA-Hr of usage, and calibration history. Information is transferred into the transmitter at startup, and whenever one of the components is inserted into a live transmitter. Because all calibration data is stored in the memory, sensor modules may be calibrated using a spare transmitter in the shop, and subsequently installed into a field transmitter, eliminating the need for field calibration.



Figure 1. Transmitter, sensor, and optional gas generator

Sensors are inserted into the housing at the base of the transmitter. They are easily removed, and installation is simplified by way of an indexing groove that aligns the connector for a perfect fit. Once installed, a threaded port cap secures it in place.

Sensors are designed for use in ambient air at temperatures of -30° to +60° C, at a relative humidity between 20 and 98 %RH (some sensors are rated to -40° C, oxygen sensors are rated to -10° C). <u>Operating sensors in extremely dry air, or in condensing gas streams, is not recommended</u>.

Generators are inserted into the optional generator housing attached to the bottom of the sensor housing at the base of the transmitter. Installation of a generator is simplified by way of an indexing groove that aligns the connector for a perfect fit. Once installed apply a little pressure to the top of the generator, and tighten the set screw (using the ATI screwdriver) on the housing to provide a secure fit. An O-Ring in the sensor cap provides the mechanism for securing the generator to the transmitter. Simply press the generator into the bottom of the sensor cap until it is secure.

| Gas                 | Part No. | Standard<br>Range | Minimum<br>Range | Maximum<br>Range |
|---------------------|----------|-------------------|------------------|------------------|
| GENERAL GASES       |          | nungo             | italige          | itango           |
| Acetylene           | 00-1057  | 0-200 PPM         | 0-50 PPM         | 0-500 PPM        |
| Alcohol             | 00-1043  | 0-200 PPM         | 0-50 PPM         | 0-500 PPM        |
| Alcohol             | 00-1044  | 0-500 PPM         | 0-500 PPM        | 0-2000 PPM       |
| Ammonia             | 00-1010* | 0-100 PPM         | 0-50 PPM         | 0-500 PPM        |
| Ammonia             | 00-1011  | 0-1000 PPM        | 0-500 PPM        | 0-2000 PPM       |
| Carbon Monoxide     | 00-1012* | 0-100 PPM         | 0-50 PPM         | 0-1000 PPM       |
| Dimethylamine (DMA) | 00-1450  | 0-100 PPM         | 0-100 PPM        | 0-200 PPM        |
| Ethylene Oxide      | 00-1039* | 0-20 PPM          | 0-20 PPM         | 0-200 PPM        |
| Formaldehyde        | 00-1040* | 0-20 PPM          | 0-20 PPM         | 0-200 PPM        |
| Formaldehyde        | 00-1349  | 0-1000 PPM        | 0-500 PPM        | 0-2000 PPM       |
| Hydrogen            | 00-1041  | 0-2000            | 0-500 PPM        | 0-2000 PPM       |
| Hydrogen            | 00-1013  | 0-4 %             | 0-1%             | 0-10 %           |
| Nitric Oxide        | 00-1021  | 0-100 PPM         | 0-50 PPM         | 0-500 PPM        |
| NOx                 | 00-1181  | 0-200 PPM         | 0-50 PPM         | 0-500 PPM        |
| Oxygen              | 00-1014  | 0-25%             | 0-10%            | 0-25%            |
| Phosgene            | 00-1015  | 0-1 PPM           | 0-1 PPM          | 0-5 PPM          |
| Phosgene            | 00-1016  | 0-100 PPM         | 0-5 PPM          | 0-100 PPM        |
| OXIDANT GASES       |          |                   |                  |                  |
| Bromine             | 00-1000* | 0-1 PPM           | 0-1 PPM          | 0-5 PPM          |
| Bromine             | 00-1001* | 0-10 PPM          | 0-5 PPM          | 0-200 PPM        |
| Chlorine            | 00-1002* | 0-1 PPM           | 0-1 PPM          | 0-5 PPM          |
| Chlorine            | 00-1003* | 0-10 PPM          | 0-5 PPM          | 0-200 PPM        |
| Chlorine Dioxide    | 00-1004* | 0-1 PPM           | 0-1 PPM          | 0-5 PPM          |
| Chlorine Dioxide    | 00-1005* | 0-10 PPM          | 0-5 PPM          | 0-200 PPM        |
| Chlorine Dioxide    | 00-1359  | 0-1000 PPM        | 0-200 PPM        | 0-1000 PPM       |
| Chlorine Dioxide    | 00-1425  | 0-1 PPM           | 0-1 PPM          | 0-5 PPM          |
| Fluorine            | 00-1006* | 0-1 PPM           | 0-1 PPM          | 0-5 PPM          |
| Fluorine            | 00-1007* | 0-10 PPM          | 0-5 PPM          | 0-200 PPM        |
| Hydrogen Peroxide   | 00-1042* | 0-10 PPM          | 0-10 PPM         | 0-200 PPM        |
| Hydrogen Peroxide   | 00-1169  | 0-1000 PPM        | 0-200 PPM        | 0-2000 PPM       |
| Iodine              | 00-1036* | 0-1 PPM           | 0-1 PPM          | 0-5 PPM          |
| Iodine              | 00-1037* | 0-10 PPM          | 0-5 PPM          | 0-200 PPM        |
| Ozone               | 00-1008* | 0-1 PPM           | 0-1 PPM          | 0-5 PPM          |
| Ozone               | 00-1009* | 0-10 PPM          | 0-5 PPM          | 0-200 PPM        |
| Ozone               | 00-1358  | 0-1000 PPM        | 0-200 PPM        | 0-1000 PPM       |

Table 1. H10 Smart Sensors

(continued on next page)

| ACID GASES         |          |            |           |            |  |
|--------------------|----------|------------|-----------|------------|--|
| Hydrogen Bromide   | 00-1455* | 0-20 PPM   | 0-10 PPM  | 0-200 PPM  |  |
| Hydrogen Chloride  | 00-1017* | 0-10 PPM   | 0-10 PPM  | 0-200 PPM  |  |
| Hydrogen Cyanide   | 00-1018* | 0-10 PPM   | 0-10 PPM  | 0-200 PPM  |  |
| Hydrogen Fluoride  | 00-1019* | 0-10 PPM   | 0-10 PPM  | 0-200 PPM  |  |
| Hydrogen Sulfide   | 00-1020* | 0-50 PPM   | 0-10 PPM  | 0-500 PPM  |  |
| Hydrogen Sulfide   | 00-1469  | 0-500 PPM  | 0-200 PPM | 0-1000 PPM |  |
| Nitrogen Dioxide   | 00-1022* | 0-10 PPM   | 0-10 PPM  | 0-200 PPM  |  |
| Sulfur Dioxide     | 00-1023* | 0-10 PPM   | 0-10 PPM  | 0-200 PPM  |  |
| General Acid Gases | 00-1038* | 0-10 PPM   | 0-10 PPM  | 0-200 PPM  |  |
| HYDRIDE GASES      |          |            |           |            |  |
| Arsine             | 00-1024  | 0-1000 PPB | 0-500 PPB | 0-2000 PPB |  |
| Arsine             | 00-1025  | 0-10 PPM   | 0-10 PPM  | 0-200 PPM  |  |
| Diborane           | 00-1026  | 0-1000 PPB | 0-500 PPB | 0-2000 PPB |  |
| Diborane           | 00-1027  | 0-10 PPM   | 0-10 PPM  | 0-200 PPM  |  |
| Germane            | 00-1028  | 0-1000 PPB | 0-500 PPB | 0-2000 PPB |  |
| Germane            | 00-1029  | 0-10 PPM   | 0-10 PPM  | 0-200 PPM  |  |
| Hydrogen Selenide  | 00-1030  | 0-1000 PPB | 0-500 PPB | 0-2000 PPB |  |
| Hydrogen Selenide  | 00-1031  | 0-10 PPM   | 0-10 PPM  | 0-200 PPM  |  |
| Phosphine          | 00-1032  | 0-1000 PPB | 0-500 PPB | 0-2000 PPB |  |
| Phosphine          | 00-1033  | 0-10 PPM   | 0-10 PPM  | 0-200 PPM  |  |
| Phosphine          | 00-1034  | 0-1000 PPM | 0-200 PPM | 0-2000 PPM |  |
| Silane             | 00-1035  | 0-10 PPM   | 0-10 PPM  | 0-200 PPM  |  |
| Silane             | 00-1285  | 0-1000 PPB | 0-500 PPB | 0-2000 PPB |  |

\*Corresponding D18 gas generator available for standard range of sensor, and lower.



# 1.4 Specifications

| Table 2. Specifications          |                                                                                                                                                                                                                                                                              |  |  |  |
|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Sensor Type                      | Electrochemical cell                                                                                                                                                                                                                                                         |  |  |  |
| Gas Type                         | Select from list (see Table 1)                                                                                                                                                                                                                                               |  |  |  |
| Range                            | User adjustable within limits of selected sensor (see Table 1)                                                                                                                                                                                                               |  |  |  |
| Response Time                    | Sensor dependent                                                                                                                                                                                                                                                             |  |  |  |
| Accuracy                         | Generally $\pm 10\%$ of value, but limited by available calibration gas accuracy.                                                                                                                                                                                            |  |  |  |
| Repeatability                    | ±1% (Electronic)                                                                                                                                                                                                                                                             |  |  |  |
| Linearity                        | ±0.5% (Electronic)                                                                                                                                                                                                                                                           |  |  |  |
| Zero Drift                       | Less than 2% full scale per month                                                                                                                                                                                                                                            |  |  |  |
| Span Drift                       | Dependent on operating environment but generally less than 3% per month                                                                                                                                                                                                      |  |  |  |
| Analog Output                    | 4-20 mA, 600 ohms max. at 24 VDC                                                                                                                                                                                                                                             |  |  |  |
| Serial Interface                 | (Standard) Epson printer output for data log reports over the configurable RS232/485 port*<br>(Optional) HART® digital signaling over the 4-20mA current loop<br>(Optional) Modbus® digital signaling over the configurable RS232/485 port*                                  |  |  |  |
| Power<br>Requirements            | (Standard and HART <sup>™</sup> Option) Powered from 4-20mA loop, 12-30 VDC, 25 mA max.<br>(Modbus Option) Requires regulated 10-28 VDC to power RS232/485. May be same supply as<br>4-20mA loop if not connected to loop receiver.                                          |  |  |  |
| Alarm Relay<br>Board Option      | Powers transmitter, relays, and RS232/485 port; Requires Deep Case<br>Three SPST relays (two with N/O contacts, one with N/C contacts)<br>Each relay: 5A @ 230 VAC resistive; 5A @ 30 VDC resistive<br>Coils are programmable as normally energized or normally de-energized |  |  |  |
| Additional Power<br>Requirements | AC version powered from 115/230 VAC, 1W nominal<br>DC version powered from 12-30VDC, 1W nominal                                                                                                                                                                              |  |  |  |
| Enclosure                        | NEMA 4X, polycarbonate with stainless steel hardware. Weatherproof and corrosion resistant (Standard) HWD: 4.4"(112mm) x 4.4" (112mm) x 3.5" (89mm) (w/Optional) HWD: 4.9"(124mm) x 4.9" (124mm) x 5.5" (139mm)                                                              |  |  |  |
| Mounting                         | (Standard) Wall or pipe mount bracket. U-Bolts suitable for 1.5" or 2" I.D.<br>(Optional) Panel mount kit available.                                                                                                                                                         |  |  |  |
| Auto-Test Option                 | Dependent on sensor gas type and full scale range (see Table 1)                                                                                                                                                                                                              |  |  |  |
| Display                          | Graphics LCD, 96w x 32h, backlit, transflective                                                                                                                                                                                                                              |  |  |  |
| Controls                         | Four, dome-type push buttons; Remote alarm reset input (w/optional alarm relays only)                                                                                                                                                                                        |  |  |  |
| Operating Temp.                  | -30° to +60° C (Min. temp. for $O_2$ sensor is –10° C)                                                                                                                                                                                                                       |  |  |  |
| Weight                           | (Standard) 1Ib (0.45kg)<br>(w/Alarm Relay Board Option) 1.5Ib (0.68kg)                                                                                                                                                                                                       |  |  |  |



#### 2.1 Transmitter Mounting

Threaded inserts in the rear of the enclosure permit the attachment of brackets for securing the transmitter to a wall or pipe. An optional bracket is also available for "flush mounting" the transmitter into a panel, so that only the front cover protrudes. (This option is available for Remote AC powered units <u>ONLY</u>.

Choose a location so the transmitter display is readily visible, and the panel buttons and sensor are accessible for calibrations. Consider the remote sensor option to locate the sensor closer to the source of a potential gas leak, or closer to the floor for gasses heavier than air.

#### 2.2 Enclosure Dimensions

Dimensions and the conduit entry locations are detailed in Figure 2 and, below.



#### Figure 2. Enclosure dimensions, standard enclosure





#### 2.3 Wall and Pipe Mounting

A PVC mounting bracket with attachment screws is supplied with the transmitter. The transmitter is attached to the bracket using four flat head screws, and the bracket is attached to a wall or pipe by way of the four slots in each corner. The slots will accommodate ¼" u-bolts designed for 1½" or 2" pipe. For 1 ½" pipe, type 304 stainless steel u-bolts with 2" I.D. are available from ATI (p/n 47-0005).



Figure 4. Wall/pipe mounting bracket

O&M Manual Revision M (Apr 2010)



Figure 6. Pipe mounting diagram

# 2.4 Panel Mounting (Remote Systems Only)

Figure 7 depicts the details for panel mounting the deep case. For this, a bracket attaches to the rear housing, and when adjusted, pulls the transmitter's flange down against the adhesive side of the gasket supplied with the bracket (make certain to remove the protective paper first).



Figure 7. Panel mounting details [deep case]

#### 2.5 Duct Sensor Mounting

The H10 sensor duct mount option allows sensors to be installed in a duct or pipe, and provides easy access for service.

The assembly is comprised of a special H10 sensor holder (Figure 8) that slides into the hollow duct mount adapter (Figure 10). The adapter has 1-1/2" MNPT threads on the insertion end, for securing it to the duct or pipe, and a barb fitting for supplying calibration gas to the sensor. An interface cable is provided to connect the sensor holder to the transmitter. Note that a mating flange for securing the adapter is not provided.

Screw the adapter into the duct or pipe so the barb fitting is accessible to connect gas tubing. Once the adapter is in place, slide in the sensor holder, lock it in place, and connect the interface cable. It is recommended that the sensor not be installed in the holder until you are ready to start the transmitter. This is especially true during construction, when excessive dust and dirt may be blowing through the duct system and be deposited on the sensor.







Figure 9 Duct Mount Sensor Exploded View



#### 2.6 Generator Installation/Removal

Generators are inserted into the optional generator housing attached to the bottom of the sensor housing at the base of the transmitter. Before installing the generator, check to see that the set screw on the side of the holder is loose and does not contact the generator during installation. An indexing groove on the side of the generator aligns the connector for a perfect fit. Once installed apply a little pressure to the top of the generator, and tighten the set screw (using the ATI screwdriver) on the housing to provide a secure fit. If the set screw is not secure, the connector on the generator may disengage causing a "generator missing" error message on the display.

To remove the generator from the holder, loosen the set screw on the side of the holder and pull up on the outlet stem.

An O-Ring in the sensor cap provides the mechanism for securing the generator to the transmitter. Simply press the generator into the bottom of the sensor cap until it is secure.



Figure 12 - Generator Exploded View



# **ELECTRICAL CONNECTIONS**

# 3.1 Transmitter Connections

3

SAFE PRACTICE Follow national, state, and local, electrical codes.

To access the wiring terminals inside the

transmitter, loosen the four screws in each corner of the housing's front cover. The front cover is hinged to the rear cover along its lower edge so it will swing down and stop at approximately 90°. The transmitter has limited space for wire; therefore, use the smallest gauge wire available that is compatible with electrical code and current requirements.



Figure 13. F12 Transmitter Configurations

#### 3.2 Sensor Adapter Board

The Sensor Adapter Board provides a socket connector for the sensor plug and mates to a 14-pin header on the transmitter's Power Supply board. Wire assignments for the sensor plug are shown below.

The board does not normally need to be removed, but if necessary, unplug the sensor and remove the (2) retaining nuts and screw. Gently pull up until the connector is free from the pins on the Power Supply board.



Figure 14. Sensor Adapter board wiring w/o Autotest Generator



Figure 15. Sensor Adapter board wiring w/ Autotest Generator Power and Communication <u>Terminals</u>

#### 3.3 Power Supply Board

The Power Supply Board is located just below the metal shield in the front cover. It contains the power and communication terminals, and provides a header for connecting the Sensor Adapter board. In addition, the board has a jumper block for configuring the communication interface.

Two terminal blocks are provided on the transmitter's Power Supply board (hidden by the metal shield) to connect power and communication wires. The table below lists each terminal and its associated function.

The transmitter is powered in using terminals 5 and 6, commonly referred to as "two-wire mode". If the Alarm Relay Board option is installed, the terminals need not be powered unless current loop signaling is required (see Alarm Relay Board Option, below).

The RS232/485 interface requires additional power applied to terminals 1 and 2. If current loop signaling is not required, they may be wired to terminals 5 and 6, respectively. If current loop signaling is required, then a third wire will be needed (3-wire mode).

Connections to these terminals are covered in detail in Wiring Examples in section 3.15.



| Power & Communication Terminals |                                                                                                     |  |  |
|---------------------------------|-----------------------------------------------------------------------------------------------------|--|--|
| Terminal                        | Description                                                                                         |  |  |
| 1                               | Communication interface supply (+),<br>10 to 28VDC. Required for RS232<br>and RS485 only, not HART. |  |  |
| 2                               | Communication interface supply common (-)                                                           |  |  |
| 3                               | RS232 Tx, RS485 A Signal                                                                            |  |  |
| 4                               | RS232 Rx, RS485 B Signal                                                                            |  |  |
| 5                               | Transmitter current loop output (-).                                                                |  |  |
| 6                               | Transmitter current loop output (-).                                                                |  |  |
| 7                               | Communication interface signal<br>common (—).                                                       |  |  |
| 8                               | Earth Ground                                                                                        |  |  |

Figure 16. Power and communication terminals.



Figure 17. Power Supply Board (Sensor Adapter removed for clarity).

The board is mated to four PCB headers on the CPU board (located below it, in the front of the transmitter front cover), and is held in by three ¼" metal standoffs. Removal of the board is not normally required, other than to change the battery. To remove it, first unplug and remove the Sensor Adapter board, then loosen the three fasteners holding down the metal shield. Remove the metal shield, and then the standoffs. Pull up gently on the board, until it breaks free from the CPU board.

Note: If the Power Supply board is separated from the CPU board for longer than 10 minutes, you will need to reset the transmitter's real time clock (see section 4.19 <u>*Real-time Clock*</u>).

#### 3.4 Communication Interface Jumper, JP2

The RS232/485 port interface is configured by the position of jumper block JP2, as shown in Figure 17. Use Table 3 to choose the appropriate block position according to the protocol, interface, and network configuration of the transmitter. For detailed information regarding Modbus protocol and interface requirements, request a copy of the "D/F12 Modbus Manual".

| Table 3. Communication Interface Options |           |                       |                                                                                                                                                                                                                                                                     |  |
|------------------------------------------|-----------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Protocol                                 | Interface | Jumper Plug           | Comments<br>Position                                                                                                                                                                                                                                                |  |
| HART                                     | Bell 202  | N/A                   | No plug required                                                                                                                                                                                                                                                    |  |
| Modbus                                   | RS232     | RS232                 | Use to connect one transmitter to a master device in a<br>"point-to-point" configuration. See "D/F12 Modbus Manual"<br>for details.                                                                                                                                 |  |
| Modbus                                   | RS485     | RS485                 | Use to connect a single transmitter to a master device and provide bias and 120 ohm termination. Also use on transmitter at furthest end of bus for multi-drop network. See "D/F12 Modbus Manual" for details.                                                      |  |
| Modbus                                   | RS485     | RS485<br>Unterminated | Use to connect up to 31 transmitters to a master device in<br>a "multi-drop" configuration. Transmitters are connected<br>without adding bias or termination. Terminate transmitter<br>at furthest end of mulit-drop bus. See "D/F12 Modbus<br>Manual" for details. |  |
| ASCII                                    | RS232     | RS232                 | Use to connect one transmitter to a printer, or system terminal (see Data logging section).                                                                                                                                                                         |  |

# 3.5 Heated Sensor Housing Wiring (Intergral)



Figure 18 - Heated Sensor Wiring Diagram

#### 3.6 Remote Sensor Wiring

The remote sensor option permits the sensor to be mounted up to 50' (MAX) from the transmitter. Remote interconnect cable sold separately.



#### Figure 19. Remote sensor wiring w/Optional Auto-Test Generator

### 3.7 Heated Sensor Wiring (Remote)





#### 3.8 Duct Mount Sensor Wiring

The Duct Mount Sensor option permits the sensor to be mounted into a process flowstream.



Figure 21 - Duct Mount Sensor Wiring

#### 3.9 Sensor Connection w/6 ft. cable



Figure 22 - Wiring Connections - 6ft. sensor cable

#### 3.10 Alarm Relay Boards (Option)

The Alarm Relay board is available in both an AC powered and DC powered version. Each version features three SPST relays, an external remote alarm reset, and provides power to the transmitter and communication interface. A 20-conductor ribbon cable connects control signals and power between the transmitter and the relay board. Relay operation must be enabled through the operator interface.

Signaling on the 20mA current loop, including HART FSK, is still possible by connecting a separate power supply and current loop receiver to terminals 5 and 6 on the P/S Board.

# 3.11 AC Powered Alarm Relay Board (Option)

The AC powered version requires 115-230 VAC at 50-60Hz applied to TB6.



Figure 23 - AC Powered Alarm Relay board and cover

# 3.12 DC Powered Alarm Relay Board (Option)

The DC powered version requires 12-30 VDC applied to TB6.



Figure 24 - DC Powered Alarm Relay Board and cover

# 3.13 Relay Configuration

By default, RL1 and RL2 are under the control of the transmitter's gas concentration alarms. The C (common) and NO (normally open) contacts of relays RL1 and RL2 are jumpered to TB3 and are open when their respective coils are de-energized (i.e., no gas alarm or no power). In contrast, RL3 is under the control of the transmitter's fault alarm, which is programmed to keep the relay coil energized until a fault is detected (or power fails). The C and NC (normally closed) contacts of relay RL3 are jumpered to TB3 so it is closed when the coil is de-energized. The default configuration may be modified cutting and reconnecting jumpers on the Alarm Relay board, and by changing variables via the operator interface.



Figure 25 - Relay Configuration Jumper Location

Relays are best used as pilot relays if heavy load switching is desired. Use suitable arc suppression devices across loads switched through internal relays.

#### 3.14 Remote Reset Input

The remote reset inputs on pins 2 and 3 of TB5 are used to clear alarms requiring manual reset. The function is activated when the two contacts are momentarily shorted together.



Figure 26 - Remote Reset Input

### 3.15 Wiring Examples

#### ATI A17/B14 Receiver(s)

Up to two transmitter/receivers may be connected to a single A17 power supply.



Figure 27 - ATI A17/B14 Receiver Modules



O&M Manual Revision M (Apr 2010)





#### 3.16 AC Powered Alarm Relay Board Wiring

Figure 30 - AC Powered Alarm Relay Board Wiring





### 3.17 DC Powered Alarm Relay Board Wiring





#### Figure 32 - Relay Option wiring (Non-Loop Power Devices)

#### 3.18 HART Transmitter, Point-to-Point (2-Wire)

The HART "Point-to-Point" connection permits the transmitter to communicate digitally, while retaining the functionality of its 4-20mA current loop. Setting the transmitter's polling address to 0 permits the current loop to function normally. According to HART specifications, the current loop must be terminated with a load resistor between 230 and 1100 ohms; however, transmitter specifications restrict the maximum analog output resistance to a lower value (see Specifications). The term, "active source", refers to a transmitter that is not loop powered, and sources current from power applied to it on separate terminals. Size the power supply according to the number of transmitters, the current demand of each transmitter (see specifications), and wire resistance. Wire resistance must not be allowed to drop the Primary Supply Voltage below 10V at the terminals of any transmitter. Hint: use at least 14 AWG wire on supply connections (shown in bold).



Figure 33 - HART Transmitter, Point-to-Point (2-Wire)



#### 4.1 Interface Panel

The F12 operator interface is non-intrusive, so you do not have to remove the housing cover to view the display, configure the transmitter, or calibrate the sensor. It features a backlit transflective 96x32 dot LCD display, and four panel keys.



Figure 34 - Operator interface panel

The operator interface is organized into pages that consist mostly of text objects representing readings, indicators, variables, functions, and links to other pages. Navigating the pages of objects is simplified through the use of a "point-and-click" interface, using an arrow cursor that may be moved from one object to the next by pressing the up or down key. While the cursor is "pointing" at an object, pressing the Enter key is said to "select" the object. The action performed depends on the type of object. For instance, if the object is a function, the Enter key executes the function. If a variable is selected for editing, the Up and Down keys change its value, and the Enter key saves it. Pressing the Esc key aborts the edit and restores the previous value. If not executing a function, or editing a variable, pressing the Esc key returns to the previous page.

#### 4.2 Startup Review Sequence

When the transmitter starts, the display cycles through a series of pages to review the configuration of the transmitter, sensor, and generator. Alarms are inhibited, and the output of the transmitter is held at 4.0 mA (17.4mA for Oxygen sensors). This state is maintained for 5 minutes to provide time for the sensor readings to stabilize.



O&M Manual Revision M (Apr 2010)
The Main Display Page shows the name and concentration of the target gas, and units of measurement (PPM, PPB, %, etc). Indicators on the left and below show alarm and operating status.



automatically returns to the Main Display page. Exceptions to this include the zero and span calibration pages.



## Esc Key Operation (Main Display Page)

Pressing the ESC key for 2 seconds, then releasing, toggles alarm inhibit mode on and off. If the alarm inhibit mode was off, it is turned on for 15 minutes (default value). If alarm inhibit was on, it is turned off immediately. Alarm inhibit mode is on when the "I" status indicator is visible.

# 4.4 Fault Indication (Main Display Page)

Faults are indicated on the Main Display Page as shown below.





The main reading represents the gas concentration value and appears on the Main Display, along with the gas name, and units of concentration. It is reported on the 4-20mA output<sup>1</sup>, and is the



PV (Primary Variable) reported on the optional HART<sup>™</sup> interface. It also appears at register 40043 (F12\_SYS\_CONCBL) on the optional Modbus interface.

By default, the main reading is blanked to suppress the display of negative values. That is, the reading is reported as zero if the concentration should dip below zero, which can occur over time as a

result of sensor aging. If the concentration falls to –20% of the full-scale range, a fault alarm is generated. Blanking is typically extended slightly above zero, as a means of stabilizing the main reading in the presence of excessive external noise, or other environmental factors (see <u>Sensor</u> <u>Setup Page</u>).

During zero and span calibration, the "un-blanked" gas concentration value is displayed, primarily to assess the amount of positive or negative drift. The "un-blanked" reading is also available on the Modbus interface (request "D/F12 Transmitter Modbus Interface Manual", for more information).

<sup>&</sup>lt;sup>1</sup> The 4-20mA may not match the reading when the "L" status indicator is visible on the Main Display, or when the output is in a physical limit.

# 4.5 Variable Editing

When a variable is selected, the edit cursor appears. The shape of the cursor symbolizes the updown scroll nature of the value being edited. To provide feedback about which key is being activated, the cursor changes to a solid up-arrow when pressing the Up key, and to a solid downarrow when pressing the Down key. When the variable has been adjusted to the desired value, pressing the Enter key changes the cursor to an hourglass shape while the program is saving the new value (recalculating associated variables and updating non-volatile memories). Pressing the Esc key aborts the edit and restores the original value.



Figure 38 - Variable editing

## 4.6 Sensors and Generators

It is important to make certain the sensor and transmitter are properly configured for your particular application. The transmitter accepts a wide variety of H10 Smart Sensors, which configure the transmitter with the name of the gas, the full-scale range, units of concentration, blanking, damping, alarm settings, and data to assist with transforming the sensor's output signal into a representation of gas concentration.

## Sensor Setup Page

| >Menu >Setup >Sensor                                      |                                      |
|-----------------------------------------------------------|--------------------------------------|
| ▶Range = 50<br>Danpi ng = 10<br>Bl anki ng = 2.00<br>Mbre | <u>Figure 39 - Sensor setup page</u> |

Table 4. Sensor variables

| Variables  | Description                                                                                                                                                                                                                                                                                                                                                    |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Range      | The Range variable sets the 100% full-scale value of the transmitter, which corresponds to the 20mA output value. Changing the range value also changes the Blanking value, which is computed as a fraction of the range. In this version of the transmitter, Range limits vary from sensor to sensor.                                                         |
| Danpi ng   | The Damping variable allows minor adjustment of the transmitter's auto-damping feature, used to stabilize readings. It is a unit-less value from 1 to 100, where a value of 1 corresponds to a T90 <sup>2</sup> response of approximately 20s, and 100 is a T90 of approximately 30s.                                                                          |
| Bl anki ng | The Blanking variable is used to force the main reading to zero, whenever the gas concentration is below the programmed value. In this version of the transmitter, Blanking limits vary from sensor to sensor, but are typically 0 to 5% of the full scale range. Note that the transmitter always performs negative blanking, even when Blanking is set to 0. |
|            | The variable is recomputed when the Range variable changes, so that same fraction of range is maintained. Doubling, or halving the Range variable, doubles or halves the Blanking variable, respectively.                                                                                                                                                      |
| More       | More is a link to an additional sensor information page (below).                                                                                                                                                                                                                                                                                               |

The data-logger records readings as a fraction of the sensor range. If data-logging is turned on (indicated by "D" status indicator on the Main Display), changing the Range variable causes a warning message to appear prior to saving the value. Select "Save" to save the new Range variable, or "Abort" to leave it unchanged.

Data-log Warning Page

WARNING Changing this parameter will Clear the datalog >Save Abort

Figure 40 - Data-log warning page

 $<sup>^{2}</sup>$  T90 is the time required for the transmitter to reach 90% of its final value, after a step change in gas concentration.

Sensor More Page

>Menu >Setup >Sensor >More

| ►Cal_History                 |                         |
|------------------------------|-------------------------|
| Test_History<br>Temp= 21.7°C | <u>Figure 41 - Sens</u> |

<u> Figure 41 - Sensor "more" page</u>

Table 5. Sensor "more" variables

| Variables    | Description                                                                                                                                           |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| Cal_History  | Cal_History is a link to the Calibration History page (see Sensor Calibration Records).                                                               |
| Test_History | Test_History is a link to the Auto-test History page (see Auto-test History)                                                                          |
| Тепр         | The Temp variable is the sensor temperature reading in degrees Celsius, which may be adjusted up or down to achieve a temperature offset calibration. |

## 4.7 Changing Sensors and Generators

H10 sensors and D18 generators may be "hot-swapped", that is, removed and replaced with power applied. To remove the sensor, unscrew the port cap and carefully pull down on the sensor body. To install, push it into the housing, and screw on the port cap.

#### Removing Sensors

Removing the sensor with powered applied starts a 60 second count down timer, during which alarms are inhibited, and the current loop output is fixed at 4.0mA (17.4mA for Oxygen sensors). This "immunity" period should be long enough to reinstall the sensor, or install a replacement sensor. If more time is needed, the count may be stopped indefinitely by selecting "Hold", which causes it to blink. A "Sensor Removed" fault will occur if a sensor is not installed before the timer expires. Figure 42 illustrates the display sequence associated with removing the sensor.

| Sensor Removed                   | Main Display |
|----------------------------------|--------------|
| Sensor Renoved<br>00:59<br>⊳Hold |              |

Figure 42 - Sensor removal page

#### Installing Sensors

The transmitter maintains a copy of the previously installed sensor and compares the part numbers of the new sensor with the old. If the part numbers match, the transmitter sequences the startup review as normal, beginning with the sensor information<sup>3</sup>. If they do not match, review halts and waits for the operator to verify the new sensor, full-scale range, and alarm settings<sup>4</sup>. The startup review is illustrated in Section 4.2 Startup Review Sequence.

<sup>&</sup>lt;sup>3</sup> As a convenience during field replacement, the transmitter sets the new sensor's full-scale range, blanking, damping, and alarms to match the previously installed sensor. This could cause confusion when transferring sensors from field transmitters to shop transmitters for calibration. During review, the shop transmitter will display the settings of the previously installed sensor, which <u>might</u> not match the field transmitter. Fortunately, this is not a real problem. The sensor may be calibrated as normal, and when it is eventually returned to the field, the field transmitter will restore its original settings. <u>Always verify settings of field transmitters</u>.

<sup>&</sup>lt;sup>4</sup> After verifying the sensor, the transmitter copies the sensor settings to its local memory.

## Warning: Changing sensor types will clear the data log.

If data logging is turned on (indicated by the "D" status indicator appearing on the Main Display), and a different type of sensor (different part number) is installed, you will be prompted to clear the data log during review.

| Startup Review                                                     |  |
|--------------------------------------------------------------------|--|
| Datalog Status<br>Logging is ON<br>11 days of 11<br>⊳Clear Datalog |  |

Figure 43 - Clear data log page

Once the sensor is installed, the transmitter executes a 5-minute (typical value) warm-up period, during which alarms are inhibited, the 4-20mA output is held at 4mA (17.4mA for Oxygen sensors), and Zero and Span calibration are not permitted.

# *NOTE:* Sensors can take as long as 12 hours to stabilize (bias) if not previously stored in the sensor keeper.

## Removing Generators

When a gas generator is removed, and the auto-test control is "READY", the transmitter displays a count down page similar to that for the sensor. Although the generator is not critical to the normal operation of the transmitter, attempting to auto-test without a generator would certainly fail. Selecting "Cancel Fault" forces the auto-test control to "OFF", which occurs by default on expiration of the timer. The auto-test control must be changed back to "READY" when a new generator is eventually installed. The display sequence associated with removing the gas generator is illustrated in Section 4.2 Startup Review Sequence.



Figure 44 - Generator removal

## Installing Generators

When a generator is installed, the transmitter sequences the startup review, beginning with the generator information, as depicted in Section 4.2 Startup Review Sequence.

. If problems with the gas type<sup>5</sup> or range<sup>6</sup> are detected, they are announced during review, and the auto-test control is set to OFF.

<sup>&</sup>lt;sup>5</sup> Some generators produce a surrogate gas, instead of the sensor's target gas (see Auto-test)

<sup>&</sup>lt;sup>6</sup> Some generators may not produce enough gas to pass Auto-test on higher sensor ranges (see Auto-test.

# 4.8 Bump-Testing

"Bump-testing" refers to a test whereby the sensor is briefly exposed to gas in order to verify the reading moves upscale from zero. It is recommended that it be performed at least once a month, using a small amount of bottled span gas.



Exposing the sensor to any reactive gas could cause false alarms, and can be avoided by temporarily inhibiting them. The most convenient method for doing so is from the Main Display, using the Esc key. This also allows you to view the transmitter reading to verify the sensor's response.



## To quickly inhibit alarms...

Press the ESC key for 2 seconds, then release. This will toggle the alarm inhibit mode on for 15 minutes (default value), hold the current loop at 4mA (17.4mA for Oxygen sensors<sup>7</sup>), and cause the "I" and "L" status indicators to appear. Repeat the procedure when finished with the bump-test, and verify the flags disappear. See "Inhibiting Alarms" for more details.

<sup>&</sup>lt;sup>7</sup> Oxygen sensors are usually exposed to air continuously, and do not require bump-testing.

# 4.9 Calibration

## Calibration Frequency

While the transmitter itself requires no periodic calibration, H10 sensors should be "zero" and "span" calibrated every 3-6 months, based upon environmental factors. Sensors frequently exposed to dirt, oil mist, vapors, or very dry air, may require more frequent calibration.

## Zero Calibration

As the name implies, zero calibration corrects the transmitter reading to zero in the absence of any reactive gas. During zero calibration, the transmitter offset error is stored, and subsequently subtracted from future readings. ATI recommends bottled zero gas as a source, which should be selected based on the type of sensor. For example, bottled "Zero" Air may be used to zero Chlorine sensors, but Oxygen sensors require bottled Nitrogen gas.

## Span Calibration

The role of span calibration is to correct the transmitter reading to a known concentration of target gas (the gas for which the sensor was designed to monitor). During span calibration, the transmitter effectively stores the slope of the error, and divides it out of subsequent readings. Sensors for most gases, such as Ammonia, require a bottled "span gas" source. This applies even to Oxygen sensors, where the span gas source is bottled zero air.

## Calibration Terminology

The zero calibration is referred to as, "zero", "zeroing", and "zeroed". Likewise for the span calibration, which appears as, "span", "spanning", and "spanned". As with most instruments, zero calibration should be performed before span.

## Calibration Kits

Calibration kits, containing zero and span bottle gas sources, are available from ATI for many toxic gases. Contact ATI, or your local ATI representative, if you have questions about calibration gas kits or gas sources.

## Indications During Sensor Calibration

The "un-blanked" gas concentration value is displayed during zero and span calibration, primarily to observe any slight amount of positive or negative drift. In addition, alarms are cleared and inhibited, and the 4-20mA output of the F12 transmitter is locked at 4.0mA (transmitters equipped with Oxygen sensors are locked at 17.4mA, representing normal, 20.9% atmospheric Oxygen). The 4-20mA output will not change when gas is applied and removed, and for 15 minutes thereafter (the default value). While viewing the calibration pages, the LCD display will indicate the changing gas concentration.

## Calibration Exceptions

Zero and span calibration are not allowed during the following conditions:

- ✓ Sensor removed, or in 5-minute<sup>8</sup> warm-up period
- ✔ Transmitter fault is active
- ✔ Auto-test is active ("A" status indicator appears on Main Display page)

To help prevent errors, zero and span are not allowed if the sensor output, or span value entered, is too high or too low. Memory errors are reported if detected while updating the sensor or transmitter memory.

<sup>8</sup> Typical value, may vary by sensor gas type.

# 4.10 Zero Calibration Procedure

Performing a zero calibration requires bottled "Zero-gas" with a 500 cc/min regulator, calibration adapter, and a convenient length of  $\frac{1}{4}$ " tubing. The gas used depends on the type of sensor installed. For example, an H<sub>2</sub>S sensor may be zeroed with Zero-air, while <u>Oxygen sensors must</u> <u>be zeroed with Nitrogen</u>. In some cases, a sensor may be zeroed directly to the atmosphere, but only when it is known to be free of reactive gasses. Check with the factory if you are uncertain about which gas to use.

Referring to Figure 40, push the calibration adapter onto the exposed end of the sensor and connect one end of the tubing (1), connect the other end of tubing to the cylinder's regulator (2). Do not open the gas valve until instructed below.

From the Main Display, select Menu, then Zero\_Sensor, as shown in Figure 451. This will clear and inhibit alarms at the transmitter, and hold the current loop output at 4mA (17.4mA for Oxygen sensors).



Figure 45 - Zero calibration



Figure 46 - Zero Sensor page

Open the regulator to flow Zero-gas to the sensor. After approximately four minutes, select Zero. The "Cal" message will appear briefly at the bottom of the page and the reading will be forced to 0, 0.0, or 0.00. Since the reading is not blanked, it may show a negative sign, like "-0.0", which is normal. The procedure may be cancelled by selecting Undo. The Undo function is only possible while remaining on the Zero\_Sensor page. Leaving the page will disable the possibility of canceling the calibration.

Press the Escape key twice to leave the Zero\_Sensor page and return to the Main page. By default, alarms will remain inhibited, and the current loop fixed for 15 more minutes (the default value).

# 4.11 Span Calibration Procedure

Span calibration\* requires bottled "span-gas" with a 500 cc/min regulator, calibration adapter, and a convenient length of  $\frac{1}{2}$ " tubing. The gas type and concentration used depends on the type of sensor installed. Check with the factory if you are uncertain about which gas to use.

Referring to Figure 47, slip the calibration adapter onto the exposed end of the sensor and connect one end of the tubing (1), connect the other end of tubing to the cylinder's regulator (2). Do not open the gas valve until instructed below.

\* Perform the Zero calibration prior to the Span calibration.

From the Main Display, select Menu, then Span\_Sensor, as shown in Figure 48. This will clear and inhibit alarms at the transmitter, and hold the current loop output at 4mA (17.4mA for Oxygen sensors).



## Figure 47 - Span calibration



## Figure 48 - Span Sensor page

Open the regulator and allow span gas to flow to the sensor. The displayed reading should begin to increase, and stabilize after 5 to 10 minutes, depending on the gas type and range of the sensor.



Select Span, the concentration reading will become fixed, and the blinking Up/Dn edit cursor will appear just to the left of the reading. Press the Up or Down key to correct the reading to match the known concentration of gas, then press Enter.

The 'Cal' message will appear briefly at the bottom of the page. The procedure may be cancelled by selecting Undo. The Undo function is only possible while remaining on the Span\_Sensor page. Leaving the page will disable the possibility of canceling the span calibration.

Press the Escape key twice to leave the Span\_Sensor page and return to the Main page. Disconnect the calibration adapter from the sensor and permit the readings to return to zero. By default, alarms will remain inhibited and the current loop fixed for 15 more minutes (the default value). Once the reading is below any of the alarm set points, you may terminate the alarm inhibit (and fixed loop output) using the Esc key on the Main Display, see <u>Esc Key Operation (Main Display Page)</u>.

# 4.12 Calibration of Duct-Mount H10 Sensors

To Zero and Span calibrate a duct-mounted H10 sensor; pull the sensor out of the duct until the calibration locking pin clicks into the retaining slot. By pulling back slowly, the retaining pin will drop into place and automatically locate the sensor just behind the gas inlet port. Connect a length of tubing from the gas regulator to the barb fitting, and then follow the zero and span calibration procedures detailed earlier.



Figure 49 - Calibration of duct-mount sensors

# 4.13 Sensor Calibration Records

A calibration record is written into the sensor memory each time a zero or span calibration is performed, and when a calibration Undo is performed. Enough memory is reserved for 63 zero calibrations and 63 span calibrations. Zero and span calibration records are accessed on the Cal\_History page.

| >Menu >Setup >Sensor                                          |  |  |  |
|---------------------------------------------------------------|--|--|--|
| Range = 50<br>Danpi ng = 10<br>Bl anki ng = 2.00<br>▶Mbre     |  |  |  |
| >More >Cal_History                                            |  |  |  |
| Zero≻1 09/12/06<br>0.0 PPM<br>Span 1 09/12/06<br>(Sens)= 100% |  |  |  |

Figure 50 - Sensor calibration history page

Zero calibration records are accessed on line 1, and are composed of an index number, date, and the concentration reading just prior to performing the calibration. The concentration reading can be thought of as the sensor "drift" from the previous zero calibration. Upon entry, the index number is set to the most recent calibration and may be scrolled down to view earlier calibration records.

Span calibration records are accessed on line 3, and include an index number, date, and the relative sensitivity of the sensor, in percent. Like the zero records, the index number is set to index the most recent calibration and may be scrolled down to view earlier calibration records. Span calibrations record the deviation from the reference sensitivity and display it in units of percent. Sensitivity is a measure of the sensor output for a given exposure to gas. More specifically, it is defined as the ratio of the signal output to the gas concentration and used as a reference. A value of 100% signifies that the sensitivity has not changed from the reference e.g., the sensor calibration is the same at it was when the system was calibrated at the factory. Lower values indicate a decreased sensitivity and, although not typical, higher values indicate increased sensitivity.

# 4.14 Auto-test

The Auto-test option verifies the serviceability of the transmitter on a prescribed schedule by exposing the sensor to a small amount of gas, and verifying a minimum response. Three attempts per test are made, and if the sensor does not respond on the third attempt, a fault alarm is triggered (may be optionally disabled). A summary of pass, fail, and retry counts are maintained in the sensor memory, and may be viewed on the Auto-test History page.

The test is performed at a specific time of day, and may be scheduled to repeat every 1 to 14 days. The date and time of the next test is available for editing, and the test may be triggered manually at any time, without affecting the preset schedule.

During startup, the transmitter examines the date and time of the next scheduled Auto-test. If the scheduled time and date has past, or if it is scheduled to occur within the next 24 hours, the transmitter moves the date by one day to provide a minimum of 24 hours before the first (or next) test is performed. This is done to allow sensors an additional "settling time", and to avoid confusion to installers during the commissioning period. Set the system clock to local time before scheduling the Auto-test time of day.

The Auto-test option requires a D18 gas generator, which must be compatible with the installed sensor's gas type, and full-scale range.

Table 6 lists gas compatible generators and sensors. Contact the factory for a complete list.

| D18 Generator | Generator        | Compatible H10 Sensors |                    |                |                 |
|---------------|------------------|------------------------|--------------------|----------------|-----------------|
| Part No.      | Туре             | Sensor Type            | Part No.           | Min. Range     | Max. Range      |
| 00-1239       | Cl <sub>2</sub>  | Br <sub>2</sub>        | 00-1000<br>00-1001 | 1 PPM<br>5 PPM | 5 PPM<br>20 PPM |
|               |                  | Cl <sub>2</sub>        | 00-1002<br>00-1003 | 1 PPM<br>5 PPM | 5 PPM<br>20 PPM |
|               |                  | CIO <sub>2</sub>       | 00-1004<br>00-1005 | 1 PPM<br>5 PPM | 5 PPM<br>20 PPM |
|               |                  | F <sub>2</sub>         | 00-1006<br>00-1007 | 1 PPM<br>5 PPM | 5 PPM<br>20 PPM |
|               |                  | O <sub>3</sub>         | 00-1008<br>00-1009 | 1 PPM<br>5 PPM | 5 PPM<br>20 PPM |
|               |                  | HF                     | 00-1019            | 10 PPM         | 20 PPM          |
|               |                  | NO <sub>2</sub>        | 00-1022            | 10 PPM         | 20 PPM          |
|               |                  | l <sub>2</sub>         | 00-1036<br>00-1037 | 1 PPM<br>5 PPM | 5 PPM<br>20 PPM |
|               |                  | Acid Gas               | 00-1038            | 10 PPM         | 20 PPM          |
| 00-1240       | $NH_3$           | NH <sub>3</sub>        | 00-1010            | 50 PPM         | 100 PPM         |
|               |                  | DMA*                   | 00-1450            | 100 PPM        | 100 PPM         |
| 00-1241       | CO               | CO                     | 00-1012            | 50 PPM         | 100 PPM         |
| 00-1243       | H <sub>2</sub> S | $H_2S$                 | 00-1020            | 10 PPM         | 100 PPM         |
|               |                  | HCI                    | 00-1017            | 10 PPM         | 100 PPM         |
| 00-1244       | SO <sub>2</sub>  | SO <sub>2</sub>        | 00-1023            | 10 PPM         | 20 PPM          |
|               |                  | HCN                    | 00-1018            | 10 PPM         | 20 PPM          |

| Table 6. | Compatible generators and sensors |
|----------|-----------------------------------|
| 10010 0. | company generators and sensers    |

\* DMA (Dimethylamine) compatible on one range only.

## Auto-test Controls

Auto-test is controlled by the Status variable, which appears on the Auto-test page shown below.

| >Menu >Setup >Auto-T                             |                                    |
|--------------------------------------------------|------------------------------------|
| ≻Status=OFF<br>Setup NextAT<br>GasGen<br>History | Figure 51 - Auto-test control page |

 Table 7. Auto-test control variables

| Variables | Description                                                                                                                                                                                                                                                                                                   |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Status    | The variable Status may be set to one of three values:<br>OFF – Auto-test will not begin automatically<br>READY – Auto-test will occur on a regularly scheduled basis<br>START – Auto-test will run once <u>after returning to the Main Display</u><br><u>page</u> , and does not affect the preset schedule. |
|           | If a generator is not installed, Status will be forced to OFF, and may not be changed to READY or START until one is installed.                                                                                                                                                                               |
|           | Setting the Status variable to <b>START</b> will not begin a manual Auto-test until you return to the Main Display page. This is designed to permit changes to the setting, or other settings, before launching the Auto-test sequence.                                                                       |

## Auto-test Setup

The Auto-test setup page configures the Auto-test schedule pass threshold, and options for various transmitter indications.

| >Menu >Setup >Auto-T >Setup                  |                                  |
|----------------------------------------------|----------------------------------|
| ►Day_Interval= 1<br>▲Pass= 2.5PPM<br>Options | Figure 52 - Auto-test setup page |

Table 8. Auto-test setup variables

| Variables    | Description                                                                                                                                                                                                                                                                                                                                                      |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Day_Interval | The Day_Interval variable specifies the number of days between automatic tests.<br>The default is 1, and the limit is 1 to 14 (the exact time of day for testing may be<br>set on the NextAT page, see below).                                                                                                                                                   |
| <b>▲Pass</b> | <u>The delta-Pass variable specifies the amount by which the gas concentration</u><br><u>must increase, in order to pass.</u> Prior to starting the test, this amount is added to<br><u>the "un-blanked" gas concentration reading to compute the pass threshold value</u><br><u>that appears on the display (see Figure 56 - Gas Generator information page</u> |
|              | <u>Auto-test Sequence</u> ). This value is limited between 5%(default value), and 10% of the full-scale range (see Range in Table 4)                                                                                                                                                                                                                             |
| Options      | Options is a link to the Auto-test Options page (below).                                                                                                                                                                                                                                                                                                         |

#### Auto-test Setup Options

>Menu>Setup>Auto-T>NextAT

The Auto-test Setup Options page variables control the behavior of the transmitter during Auto-test.

| ►Log_Data=YES            |  |
|--------------------------|--|
| Cause_Faul t=YES         |  |
| Override_n <b>A</b> =YES |  |
| —                        |  |

Figure 53 - Auto-test setup options page

| Variables            | Description                                                                                                                                                                                                                                                                                                                                                                                                       |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Log_Data             | The Log_Data variable controls values logged during Auto-test. When set to YES (default), the gas concentration (main reading) is logged as usual, including any increase caused by the gas generator. When set to NO, a code is logged that will display as, "TEST", on graphic and tabular report pages, and printouts.                                                                                         |
| Cause_Faul t         | The Cause_Fault variable determines if Auto-test failures cause transmitter fault<br>alarms. When set to YES (default), a failure to pass Auto-test after the third attempt<br>will cause a fault alarm, and force the 4-20mA output to the Fault_mA value,<br>regardless of how the test was initiated (automatic or manual). When set to NO,<br>Auto-test failures do not cause fault alarms (not recommended). |
| Overri de_n <b>A</b> | The Override_mA variable controls the 4-20mA output during Auto-test. When set to YES (default), the 4-20mA output will be forced to the Autotst_mA value to prevent receiver alarms (see <u>4-20mA Setup</u> ). When set to NO, the output will increase as the gas concentration rises, and may cause receiver alarms (not recommended).                                                                        |

## <u>Next Auto-test</u>

The date and time of the next scheduled Auto-test appears on the NextAT page. The time appearing on this page establishes the time of day for all future Auto-tests. After each Auto-test, the date will be incremented by the Day\_Interval variable on the Auto-test Setup page (above). Note that if the Auto-test Status variable is set to READY, and the next auto-test setting is deliberately (or unintentionally) scheduled in the past, an Auto-test is immediately scheduled.

>Menu>Setup>Auto-T>NextAT

Next Auto Test ▶09/14/06 09:00 This is apparent upon returning to the Auto-test control page (above), and seeing the Status variable blinking START. At this point, you may change the control to OFF, change the system clock, then change the control back to READY.

#### Figure 54 - NextAT page

During startup, the transmitter examines the date and time of the next scheduled Auto-test. If the scheduled time and date has past, or if it is scheduled to occur within the next 24 hours, the transmitter moves the date by one day to provide a minimum of 24 hours before the first (or next) test is performed. Set the system clock to local time before scheduling the Auto-test time of day.

#### Auto-test History



The Auto-test History page provides a summary of passes, failures, and retries, which are maintained in the sensor memory. Since three attempts are made, there are always two retries before a failure is recorded. The total number of tests is the sum of the passes and failures, and the number of gas generations is the sum of all three values.

#### Figure 55 - Auto-test history page

The Reset function permits all counts to be zeroed by selecting Reset, and scrolling the value to YES. Clearing the counts is <u>not</u> recommended, since this information can prove useful over the lifetime of the sensor.

#### Gas Generator Information

The Gas Generator page lists information about the D18 gas generator. The top line contains the generator gas code and the chemical abbreviation of the gas. The second line shows the delta-

>Menu>Setup>Auto-T>GasGen



Pass value (described on the <u>Auto-test Setup</u>), and the amount of current required to generate that particular concentration. The third line displays the mAH consumption of the generator. Selecting the Exit function returns the display to the previous page.

#### Figure 56 - Gas Generator information page

#### Auto-test Sequence

When the Auto-test starts (automatically or manually), alarms are inhibited and by default, the loop is fixed at 4mA (see <u>4-20mA Setup</u>). The transmitter will then step through a series of displays representing the test sequence.

Alarm relays are inhibited during Auto-test, and for up to 10 minutes afterwards during the recovery period. If a gas leak occurs during the recovery period, will cancel the alarm inhibit and revert to normal operation. A gas leak is presumed when the concentration rises to 50% of the full-scale range, or higher.

While the alarms are inhibited during Auto-test, the 4-20mA output will usually be at a fixed level (Override\_mA=YES). The output override may be disabled by setting Override\_mA=NO, however, steps should be taken to disable receiver alarms in the control room.



Revision M (Apr 2010)

# 4.15 Alarms and Relays

Three gas concentration alarms and one fault alarm are standard in the F12 transmitter. Alarm status flags appear on the Main Display, and status is available over the optional serial interface. Alarms may be assigned to activate one or more of three optional relays (see <u>Alarm Relay</u>).

## Gas Concentration Alarms

Gas concentration alarms are classified as "high level" (or "rising"), and "low level" (or "falling"), according to whether they are set to activate when too much gas is detected, or too little. The transmitter features three alarms labeled Caution, Warning, and Alarm. Although not strictly enforced, Alarm usually has the highest priority, followed by Warning and Caution. Figure 58 and Figure 59 depict the default priority relationships.

For toxic gas sensors, the typical default setting for the Warning alarm is the TLV (threshold limit value) of the target gas. Alarm is usually set to 2 or 3 times higher than the TLV, and Caution is typically used to alarm on negative drift of -10% range or more (a fault alarm occurs if the reading drifts to -20% range, or below).

Figure 58 - Priority for high level (rising) alarms

Normal atmospheric oxygen is 20.9%. Oxygen sensor alarms default to: Warning 19.5%, Alarm 16%, and Caution 23%. Note that Caution is used to trap positive sensor drift.

Figure 59 - Priority for low level (failing) alarms

## <u>Manual Alarm Reset</u>

Alarms programmed for manual reset (see below) are held active, or latched, even after alarm conditions have subsided, and are reset by selecting the respective flag (A,W, or C) on the Main Display page. The Alarm Reset page

appears and displays the date and time of the alarm. If alarm conditions have subsided, you may reset just the selected alarm (Reset), or all alarms (ResetAll). A link to the Alarm Inhibit page is provided for convenience.





## Remote Alarm Reset

Closing the "Remote Reset" input on the Alarm Relay board (section 3.10) resets all latched alarms, if the respective alarm conditions have subsided.



#### Gas Alarm Operation

Figure 56 depicts relationships between variables associated with a high level, or <u>rising</u>, gas alarm, and how they function in the presence of a gas leak, and recovery.



Figure 61 - High level (rising) alarm (Active = ABOVE SP, Reset = AUTO)

depicts relationships between variables associated with a low level, or <u>falling</u>, gas alarm (such as for Oxygen deficiency), and how they function in the presence of a gas displacement, and recovery.



Figure 62 - Low Level (failing) alarm (Active = BELOW SP, Reset = AUTO)

O&M Manual Revision M (Apr 2010)

## Gas Alarm Setup

Table 9. Gas Alarm Setup

```
►Alarm Relays
Warning
Caution
Inhibit
```

| >Alarm                                                         | >Warning                                                       | >Caution                                                     |
|----------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------|
| Active=ABOVE_SP<br>Set_Point= 20.0<br>Res_Point= 20.0<br>≻Mbre | Active=ABOVE_SP<br>Set_Point= 10.0<br>Res_Point= 10.0<br>≻Mbre | Active=BELOW_SP<br>Set_Point= -10<br>Res_Point= -10<br>≻Mbre |
| >Alarm >More                                                   | >Warning >More                                                 | >Caution >More                                               |
| ▶ <b>Reset=MANU</b>                                            | ▶ <b>Reset=AUTO</b>                                            | ▶ <b>R</b> eset=AUTO                                         |

Figure 63 - Alarm setup pages

#### Table 10 Alarm Variables

| Variable          | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Active            | The Active variable is used to specify the region of concentration where<br>the alarm is active. When set to ABOVE_SP, the alarm becomes active<br>at and above the set point (referred to as a high level, or rising alarm).<br>When set to BELOW_SP, the alarm becomes active at and below the set<br>point (referred to as a low level, or falling alarm). Setting the value to<br>DISABLED permanently deactivates the alarm. The variable setting is<br>stored in the sensor memory. |
| Set_Point         | The Set_Point variable defines the concentration level that the alarm<br>becomes active. The alarm becomes active immediately if the set delay<br>variable is 0, otherwise, it becomes active at the expiration of the set delay<br>period. When the set point is reprogrammed, the reset point value is also<br>reprogrammed to the same value.                                                                                                                                          |
| <b>R</b> es_Point | The Res_Point variable defines the concentration level that the alarm becomes inactive. Once the alarm is active, it will remain active until the concentration level reaches the reset point. The alarm then becomes inactive immediately if the set delay variable is 0, otherwise, the alarm becomes inactive at the expiration of the reset delay period (only if the reset variable is programmed as AUTO – see below). The limits for the reset point are defined below.            |
|                   | Active=ABOVE_SP {High Alarm}<br>Upper limit = current set point value<br>Lower limit = lowest set point value                                                                                                                                                                                                                                                                                                                                                                             |
|                   | Active=BELOW_SP {Low Alarm}<br>Upper limit = highest set point value<br>Lower limit = current set point value                                                                                                                                                                                                                                                                                                                                                                             |

When the set point is reprogrammed, the reset point value is reprogrammed to the same value.

**Reset** The Reset variable defines how the alarm is permitted to transition from active, to inactive. When the variable is set to AUTO, the alarm will transition without operator intervention, as soon as conditions permit (concentration reaches the reset point, and the reset delay period expires). When the variable is set to MANU, the alarm conditions must have subsided, and an operator must acknowledge the alarm manually, through the operator interface, the serial interface, or through the remote reset (see Electrical Connections, page 12).

Note: Res\_Delay is operational for AUTO only. Setting the Reset variable to MANU suppresses display of the Res\_Delay variable.

**Fault\_Goto** The Fault\_Goto variable specifies alarm behavior during transmitter faults, and overrides all other alarm settings. If the fault alarm should become active, you may program the concentration alarm to behave in one of three ways:

HOLD - the transmitter will attempt to hold the alarm in its current state. If the alarm is active, it will remain active. If the alarm is inactive, it will be inhibited from becoming active until after the fault is cleared. SET - activates the alarm immediately, the set delay period is ignored. This feature permits the alarm to signal both concentration and fault conditions.

RESET – deactivates the alarm immediately, the reset delay period is ignored.

- **Set\_Delay** The set delay variable is used to configure the amount of time in seconds that the concentration must be in the alarm active region before becoming active. It may be used to avoid triggering alarms on relatively short gas exposures. Also, it may be used to help prevent alarm relay chattering when the concentration level is varying between the set point and reset point. The variable may be programmed between 0 (its default) and 10 seconds.
- **Res\_Del ay** The reset delay variable is only displayed when the Reset variable is set to AUTO. It is used to configure the amount of time in seconds that the concentration must be in the alarm inactive region before becoming inactive. Like the set delay variable, it may be used to help prevent alarm relay chattering and is preferred over using set delay. The variable may be programmed between 0 (its default) and two hours (7200 seconds).

## Fault Alarms

When a fault alarm occurs, the Main Display appears as shown below. By default, new alarms are inhibited, and active alarms are held so that relays controlling lights, sirens, and fans may continue to operate (this behavior may be modified on the Alarms Setup pages). Faults are permitted to clear automatically, without operator intervention, if they do not persist.



Figure 64 - Fault alarm on Main Display page

Selecting the fault alarm flag causes the transmitter to display the fault code on line 1, and a description of the problem(s) on line 2. Selecting the Next function causes line 2 to display the next fault, if any.

| >Menu >F!                                                     |                               |
|---------------------------------------------------------------|-------------------------------|
| FAULT= 00000020<br>Sensor Renoved<br>(See 0&M Mnual)<br>⊳Next | <u>Figure 65 - Fault page</u> |

## Corrective Actions

Transmitter faults may be caused by improper wiring, ground loops, power supply sizing, current loop receivers, and other external factors.

- 1. At power on, transmitters can demand 2 or 3 times the normal amount of supply current. If the supply is not sized properly, transmitters may not power on, or may produce a fault in the external power supply. If this is suspected, try starting transmitters one at a time using switch SW5 on the CPU Board.
- 2. Check that each transmitter has the proper supply voltage at TB1 on its Power Supply Board. The F12 Toxic Gas Transmitter requires at least 12v in all wiring modes.
- 3. When troubleshooting, it is permissible to temporarily swap sensors, generators, and board stacks with other transmitters. When finished, you MUST RE-VERIFY all transmitter settings, especially sensor, alarm, and 4-20mA settings. Also note that swapping components may result in losing data log records, since the log is dependent on sensor part numbers, and the full-scale range.

Table 11 lists transmitter faults and corrective actions.

| ault                 | Description                                   | Corrective Action(s)                       |
|----------------------|-----------------------------------------------|--------------------------------------------|
|                      | •                                             |                                            |
| DCO Read Error       | The analog-to-digital converter channel       | 1. Cycle power off and or                  |
|                      | assigned to the sensor's gas concentration    | 2. Replace sensor                          |
|                      | output signal has failed, or is out of range. | 3. Replace transmitter                     |
| Busy Error           | The LCD driver chip cannot recover from an    | 1. Cycle power off and or                  |
| v                    | internal error.                               | 2. Replace transmitter                     |
| Bus Error            | Serial peripheral interface bus has faulted.  | 1. Cycle power off and or                  |
|                      |                                               | 2. Replace transmitter                     |
| l <b>Read E</b> rror | The analog-to-digital converter channel       | 1. Cycle power off and or                  |
|                      | assigned to the sensor's temperature output   | 2. Replace sensor                          |
|                      | signal has failed, or is out of range.        | 3. Replace transmitter                     |
| sor (-)Range         | The sensor has drifted -20% range (below      | 1. Zero sensor                             |
|                      | zero).                                        | 2. Replace sensor                          |
| sor Renoved          | The sensor cannot be detected.                | 1. Reinstall sensor                        |
|                      |                                               | 2. Cycle power off and or                  |
|                      |                                               | 3. Replace sensor                          |
|                      |                                               | 4. Replace transmitter                     |
| sor Mem Error        | One or more configuration variables in the    | 1. Cycle power off and or                  |
|                      | sensor memory do not pass checksum test.      | 2. Replace sensor                          |
|                      |                                               | 3. Replace transmitter                     |
| or Cfg Error         | One or more sensor configuration variables    | 1. Cycle power off and or                  |
|                      | are outside of expected range.                | 2. Replace sensor                          |
|                      |                                               | 3. Replace transmitter                     |
| Gen Renoved          | The generator cannot be detected.             | 1. Install generator                       |
| WILL AND YOU         | The generator cannot be detected.             | <ol> <li>Cycle power off and or</li> </ol> |
|                      |                                               | 3. Replace generator                       |
|                      |                                               | 4. Replace sensor                          |
|                      |                                               | 5. Replace transmitter                     |
| Incompatible         | The gas generator is not compatible with      | 1. Replace generator                       |
|                      | the installed sensor type or range.           | 2. Change sensor range                     |
|                      | ··· -                                         | 3. Replace sensor                          |
|                      |                                               | 4. Replace upper stack                     |
|                      |                                               | 5. Replace full stack                      |
| stem Mem Error       | A checksum error has been detected in the     | 1. Cycle power off and or                  |
|                      | system setup memory.                          | 2. Replace transmitter                     |

O&M Manual Revision M (Apr 2010)

| Al arm Mem Error        | A checksum error has been detected in the alarm setup memory.                                                                                                              | 1.<br>2.       | Cycle power off and on Replace transmitter                                                                        |
|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------------------------------------------------------------------------------------------------------------------|
| <b>Operator Mem Err</b> | A checksum error has been detected in the operator setup memory.                                                                                                           | 1.<br>2.       | Cycle power off and on Replace transmitter                                                                        |
| HART Mem Error          | A checksum error has been detected in the HART setup memory.                                                                                                               | 1.<br>2.       | Cycle power off and on Replace transmitter                                                                        |
| Autotest Failed         | Auto-test failed after 3 attempts.                                                                                                                                         | 1.<br>2.<br>3. | 1 5                                                                                                               |
| Use 3-Wire Power        | Relay option jumper is installed, but transmitter is powered from loop (2-wire).                                                                                           | 1.<br>2.<br>3. | If relays are not used, remove<br>jumper.<br>Re-wire transmitter in 3- or 4-<br>wire mode.<br>Replace transmitter |
| Stack Overflow          | An internal error occurred in the CPU.                                                                                                                                     | 1.<br>2.       | Cycle power off and on Replace transmitter                                                                        |
| Factory Cal Err         | An error has been detected in the factory calibration memory.                                                                                                              | 1.<br>2.       | Cycle power off and on Replace transmitter                                                                        |
| UNCALIBRATED            | This appears on the Main Display, in place<br>of the gas name, when the transmitter has<br>not been factory calibrated, or the<br>calibration memory has become corrupted. | 1.<br>2.       | Cycle power off and on Replace transmitter                                                                        |
| Fault AlarmTest         | This is not a real fault. This occurs when the fault alarm is being tested locally, or remotely.                                                                           |                |                                                                                                                   |

#### Alarm Relays

The Alarm Relay Board provides three optional SPST mechanical relays rated for 5 amps, noninductive loads at 250VAC. These relays are suitable for switching small loads, such as horns and warning lights, but should not be used to switch motors or other high current, inductive loads.

Each relay is assigned to one of the four alarms, and may be programmed as normally energized (failsafe), or normally de-energized. A normally energized relay will have electrical continuity between its C and NO contacts (while the transmitter is powered on), and will be open between its C and NC contacts. Conversely, a normally de-energized relay will have continuity between its C and NC contacts, and will be open between its C and NO contacts. Figure 66 illustrates the function of alarm and relay variables on the operation of the relays.



Figure 66 - Alarm relay diagram (normal runtime state)

## Alarm Relays Setup

Relays are enabled and configured through the Relays Menu page.

>Menu >Setup >Alarms

| Al arm<br>Warni ng<br>Caut i on<br>Inhi bi t | ► Rel ays                 |                                                         | 1       |
|----------------------------------------------|---------------------------|---------------------------------------------------------|---------|
|                                              | Relays=<br>≻Setup<br>Test | Enabled<br>>Setup<br>RLy Alarn<br>RL1>Warm<br>RL2 Alarn | ing Off |

<u>Figure 67 - Relays setup page (example)</u> The Alarm Relay board is operational only when "Relays" is set to "Enabled".

Use the setup page to select the alarm trigger source (Alarm, Warning, Caution, Fault), and failsafe property (Normal-On or Normal-Off).

## Testing Alarm Relays

Relays are tested by triggering (simulating) their assigned alarms on the Relay Test page. To trigger an alarm, scroll the "Select" variable up and down until an X appears below the letter representing the alarm. Save the selection by pressing the Enter key, and move the cursor to the function labeled "Start".



When ready, select "Start" to begin the test. "Any key to Stop" will replace "Start", and pressing any key will end the test.

## Relay Test Page



Figure 68 - Relay test page (example)

## Inhibiting Alarms

Alarms should be inhibited to prevent false activation, such as done just prior to "bump-testing" the sensor.

The most convenient method for temporarily inhibiting alarms is from the Main Display. Hold the magnet over the ESC key for 2 seconds, and remove it. This will toggle the alarm inhibit mode on for 15 minutes, which will clear and inhibit alarms, hold the current loop at 4mA (17.4mA for Oxygen sensors), and cause the "I" and "L" status indicators to appear. Repeating the procedure toggles alarm inhibit mode off immediately, restores the current loop to normal operation, and clears the "I" and "L" status indicators. Both the inhibit duration, and loop output, are programmable and may be accessed on the Alarm Inhibit setup page (see below).



Figure 69 - Inhibiting alarms from the Main Display

## Alarm Inhibit Setup

Variables and controls associated with the alarm inhibit mode are accessible on the Alarm Inhibit setup page (below), and are detailed in Table 12.

>Menu >Setup >Alarms >Inhibit

```
►Inhi bi t_nA= 4.0
Inhi bi t_Ti ne=
15:00(nm ss)
Start
```

Figure 70 - Alarm inhibit setup page

Table 12. Alarm inhibit variables and controls

| Variables            | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Inhi bi t_n <b>A</b> | The Inhibit_mA variable is output on the current loop during alarm inhibit. It ranges from 3.8 to 22.0 mA (this is the same value that appears on the 4-20mA Setup page).                                                                                                                                                                                                                                                                                                                         |
| Inhi bi t_Ti ne      | Alarm Inhibit Off<br>The Inhibit_Time variable is the duration of the alarm inhibit mode, and is programmable<br>from 00:00 to 99:59 (mm:ss).                                                                                                                                                                                                                                                                                                                                                     |
|                      | Alarm Inhibit On:<br>The variable counts down from its programmed duration. Selecting it temporarily freezes<br>the count and permits it to be scrolled up and down. If Enter is pressed, counting resumes<br>from the new value. If Esc is pressed, counting resumes at the previous value. These<br>changes are temporary, and are not saved as the programmed value.                                                                                                                           |
| Start (Stop)         | The Start function turns on alarm inhibit, which clears and inhibits alarms, holds the current loop at 4mA (17.4mA for Oxygen sensors), causes the "I" and "L" status indicators to appear, and starts the Inhibit_Time variable to begin ticking down. The label then changes to "Stop", and selecting it again turns off alarm inhibit, restore the current loop to normal operation, clears the "I" and "L" status indicators, and restores the Inhibit_Time variable to its programmed value. |

# 4.16 4-20mA Output

The 4-20mA output normally sources <u>positive</u> current to a receiver, proportional to the main reading. The output is 4 mA at zero, and rises to 20mA at the full-scale range (see "Range" variable in <u>Sensor Setup Page</u>), and may go as high as 24mA (125% Range) in case of gas flooding. Since the reading is blanked below zero, the output should never go below 4mA in the course of normal operation.

Figure 71 - Current loop output plot



## Output Overrides

By default, the output is forced to 3.6mA to signal fault alarms to the receiver. During alarm inhibit and auto-test modes, the loop is fixed at 4.0mA (17.4mA for Oxygen sensors) to prevent false alarms at the receiver. These are the default values, which may be changed on the 4-20mA Setup page shown below.

## 4-20mA Setup

Variables listed on this page are described in Table 13.

| >Menu >Setup >4-20mA                                         |
|--------------------------------------------------------------|
| ►Autotst_nA= 4.0<br>Inhibit_nA= 4.0<br>Fault_nA= 3.6<br>More |

Figure 72 - 4-20mA setup page

Table 13. 4-20mA variables

|                      | 3. 4-20mA variables                                                                                                                                                                                                            |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables            | Description                                                                                                                                                                                                                    |
| Autotst_nA           | The Autotst_mA variable is the mA value output during Auto-test mode – to prevent false alarms at the receiver. The default is 4.0mA (17.4mA for Oxygen sensors), and is limited between 3.5 <sup>9</sup> and 22.0 mA.         |
| Inhi bi t_n <b>A</b> | The Inhibit_mA variable is the mA value output during the Alarm Inhibit mode – to prevent false alarms at the receiver. The default is 4.0mA (17.4mA for Oxygen sensors), and is limited between 3.5 <sup>2</sup> and 22.0 mA. |
| Faul t_m             | The Fault_mA variable is the mA value output during Fault alarms. The default is 3.6mA, and is limited between 3.5mA <sup>2</sup> and 22.0mA. The value should be recognized as a fault by the loop receiver.                  |
| More                 | More is a link to the 4-20mA control page.                                                                                                                                                                                     |

<sup>&</sup>lt;sup>9</sup> Since the transmitter may be powered from the current loop, 3.5mA is the lower limit for all settings.

## 4-20mA Control

The 4-20mA Control page permits adjustment of the analog output, and provides a method for manually forcing it to a fixed value to overcome leakages, verify linearity, or test receiver alarms.

| >Menu >Setup >4-20mA >More                          |                                 |
|-----------------------------------------------------|---------------------------------|
| ►Adjust_4n <b>A</b><br>Adjust_20nA<br>Force= 4. 0nA | Figure 73 - 4-20mA control page |

Table 14 4-20mA control variables

| Variables          | Description                                                                                                                                                                                                                                                                                                              |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Adjust_4n <b>∆</b> | The Adjust_4mA variable is used to adjust the 4mA level on the 4-20mA output.                                                                                                                                                                                                                                            |
| Adjust_20mA        | The Adjust_20mA variable is used to adjust the 20mA level on the 4-20mA output.                                                                                                                                                                                                                                          |
| Force              | The Force variable is used to force the 4-20mA output to a fixed value. While the variable is not selected, the displayed value is updated to show the real-time output level. The loop is fixed at the instant the variable is selected, and the value may be scrolled up and down as desired, between 3.5 and 22.0 mA. |

## Loop Adjustment

Loop adjustment consists of adjusting the 4 and 20 mA levels (order does not matter) by scrolling the corresponding DAC<sup>10</sup> value. This may be accomplished by reading a current meter connected across the 4-20mA (+) and (-) terminals on the transmitter's P/S Board, or reading the display of a calibrated, current loop receiver.

Warning: Disable current loop receiver alarms before proceeding.

Select **Adj ust\_4nA** or **Adj ust\_20nA** and observe the following displays. Select DAC\_Value and scroll the displayed value up and down to achieve the desired output level, and press Enter to save, or Esc to exit without saving.

| >Menu >Setup >4-20mA >More<br>>Adjust 4mA           | >Menu >Setup >4-20mA >More<br>>Adjust_20mA            | 1                                                        |
|-----------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------|
| 4-20nA_Output<br>Monitor the 4-20<br>▶DAC_Value=540 | 4-20mA_Output<br>Monitor the 4-20<br>▶DAC_Value=14380 | < Monitor the 4-20 while slowly adjusting the DAC value. |

Figure 74 - Loop adjustment pages (DAC\_values shown may not match)

<sup>&</sup>lt;sup>10</sup> Digital-to-Analog-Converter value ranging 0 to 16383 (14-bits). Adjustment is performed at factory, values will vary from transmitter to transmitter. This range may increase on future versions.

# 4.17 Data-log

The transmitter logs gas concentrations in one of 12 discrete intervals ranging from 1 to 60 minutes, providing data from 11 to 474 days. Table 15 details sampling intervals and the associated metrics.

| Table 15. Data-log sampling metrics |                                                                                        |  |  |
|-------------------------------------|----------------------------------------------------------------------------------------|--|--|
| Samples/Day                         | Days                                                                                   |  |  |
| 1440                                | 11                                                                                     |  |  |
| 720                                 | 22                                                                                     |  |  |
| 480                                 | 32                                                                                     |  |  |
| 360                                 | 43                                                                                     |  |  |
| 288                                 | 54                                                                                     |  |  |
| 240                                 | 64                                                                                     |  |  |
| 144                                 | 104                                                                                    |  |  |
| 120                                 | 124                                                                                    |  |  |
| 96                                  | 152                                                                                    |  |  |
| 72                                  | 196                                                                                    |  |  |
| 48                                  | 278                                                                                    |  |  |
| 24                                  | 474                                                                                    |  |  |
|                                     | Samples/Day<br>1440<br>720<br>480<br>360<br>288<br>240<br>144<br>120<br>96<br>72<br>48 |  |  |

The gas concentration (see Table 15) is recorded as an instantaneous value, and is not averaged or filtered in any way. When the data log memory is filled, new records will overwrite older ones.

## Data-log Access

The Data Log Access page provides links to the setup, review, and print pages, which are described below.

>Menu >Setup >DataLog

≻Setup Revi ew\_Tabul ar Revi ew\_Graphi c Pri nt

Figure 75 - Data Log access page

Data-log Setup

| >Menu>Setup>DataLog>Setup<br>Sample= 1 ni ns Sample/Day=1440 | Variables on the Data Log Setup page select one of the 12 discrete sampling intervals listed in Table 15, and control starting, stopping and clearing of the data-log. |
|--------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Max_Days= 11<br>Sampling=0N                                  | <u>Figure 76 - Data Log setup page</u>                                                                                                                                 |

Table 16. Data-log setup variables

| Variables                            | Description                                                                                                                                                                                                                                                 |
|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sampl e,<br>Sampl e/Day,<br>Max_Days | These variables are used to select one of the 12 sampling intervals listed in Table 15. Each variable functions identically, and scrolling any one of the variables updates the other two. Warning: changing the sampling interval will clear the data-log. |
| Sanpl i ng                           | The Sampling variable is used to control data recording, which starts when set to ON, and stops when set to OFF. The data-log is cleared when set to CLR, after which the control is returned to its previous value (ON or OFF).                            |

Data may be displayed on the LCD graphically, or in a tabular report format. Data may also be output to a terminal, terminal program, or serial printer. Dates formats are configurable as MM/DD or DDMMM (see System Clock), and samples are displayed in the concentration units shown on the Main display.

In place of numeric data samples, a report may display special text to indicate samples were unavailable, not yet sampled, or some condition prevented sampling.

| Table   | Table 17. Data log special text                                                  |  |
|---------|----------------------------------------------------------------------------------|--|
| Special | Description                                                                      |  |
| Text    |                                                                                  |  |
|         | Sample unavailable (transmitter powered off, or sample not yet recorded)         |  |
| FFFF    | Fault alarm active at time of sample                                             |  |
| TEST    | Auto-test active at time of sample (if Log_Data=NO, see Auto-test Setup Options) |  |
| * * * * | Data is corrupted, or unreliable                                                 |  |

#### Data-log Graphic Report



The Graphic Report page plots samples on the LCD from left to right, where older samples are on the left, and newer samples are to the right. Pressing the Up and Down keys moves the vertical cursor line right and left, respectively, while updating the date, time, and sample data text on the bottom line.

Figure 77 - Data Log graphic report page

Upon entry, the cursor is parked at the most recent sample. Moving the cursor left displays the date, time, and values of earlier samples (moving it right will show "- - - -", not sampled yet). Pressing the Enter key switches to the Tabular Report page, shown below, and pressing the Esc key returns to the Menu page. Data is not plotted while viewing the page.

## Data-log Tabular Report



The Tabular Report page displays samples in the text field labeled "Conc" (gas concentration) and provides <u>direct access</u> to data by scrolling to an exact date and time.

Figure 78 - Data log tabular report page

Upon entry, the Date, Time, and Conc variables are set to the most recent sample. Scrolling the Time variable up increments it by the sampling interval, and causes the next, successive sample to be displayed at Conc. Scrolling Time down displays the previous sample time, and value. Scrolling Time up and down will cause a date rollover at midnight. Scrolling the Date variable up increments it by one day, while holding the Time variable fixed. This is an expedient method to access specific data, and is useful for examining samples recorded at the time of day.

Once the date and time are set, select the Show\_Graphic link to switch to the Graphic Report page. Data is not updated while viewing the page.

#### Data-log Printout

Data-log reports may be sent to serial printer, terminal, or terminal emulation program, such as Microsoft Hyperterminal®. See Appendix A. details on how to setup and print reports.

|                                         | Date                                                                                         | Time                                                                 | <b>S</b> 0               | <i>S</i> 1                                                           | <i>S2</i>                                                            | <b>S</b> 3                                                           |
|-----------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|
|                                         | 07/09/06<br>07/09/06<br>07/09/06<br>07/09/06<br>07/09/06<br>07/09/06<br>07/09/06<br>07/09/06 | 22:40<br>22:44<br>22:52<br>22:55<br>23:00<br>23:04<br>23:08<br>23:12 |                          | 0.00<br>0.00<br>TEST<br>TEST<br>TEST<br>0.06<br>0.05<br>0.05<br>0.05 | 0.02<br>0.00<br>TEST<br>TEST<br>TEST<br>0.07<br>0.06<br>0.04<br>0.05 | 0.01<br>-0.0<br>TEST<br>TEST<br>TEST<br>0.06<br>0.06<br>0.05<br>0.04 |
| 000000000000000000000000000000000000000 | )7/09/06<br>)7/09/06<br>)7/09/06<br>)7/09/06<br>)7/09/06<br>)7/09/06                         | 23:24<br>23:28<br>23:32<br>23:36                                     | 0.00<br>-0.0<br><br>FFFF | 0.00                                                                 | 0.00                                                                 | -0.1<br>0.00<br><br><br>0.02                                         |
| _                                       |                                                                                              |                                                                      |                          |                                                                      |                                                                      |                                                                      |

Figure 79 - Data Log printout (example)

# 4.18 Display

The transmitter features a transflective, 96w x 32h graphics LCD, and permits adjustment of the contrast to improve readability at various viewing angles.

## Display Setup

| >Menu >Setup >Display  Contrast= 56% | Variables on the Display Setup page are used to control the display contrast, and manage the backlight. |
|--------------------------------------|---------------------------------------------------------------------------------------------------------|
|                                      | <u>Figure 80 - Display setup page</u>                                                                   |

## Table 18. Display page variables

| Table     | To. Display page valiables                                                                                                                                                                                 |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables | Description                                                                                                                                                                                                |
| Contrast  | The Contrast variable is used to adjust the LCD contrast. Scroll the variable up to increase contrast (darker text), or down to decrease it (lighter text). The variable is adjustable between 0 and 100%. |

# 4.19 System

System pages are used to access and configure the internal clock, security, reset functions, communication protocols, and version information.

System Access



## Real-time Clock

Clock Setup

| >Menu >Setup >System >Clock                       | The            |
|---------------------------------------------------|----------------|
| ►Day= Tuesday<br>Date=09/17/06<br>Fornat=MM/DD/YY | clocł<br>loggi |
| Tine=14:00                                        | <b>F</b> low w |

The Clock Setup page is used to set the transmitters real-time clock, which is referenced during sensor calibrations and data ogging, and used to trigger Auto-test.

Figure 82 - Clock setup page

| Variables | Description                                                                                                                          |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------|
| Day       | Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, and Sunday                                                                   |
| Date      | Used to configure the month, date, and year, in the format specified by the Format variable (below). Built-in support for leap year. |
| Format    | Selects the date format:<br>MM/DD/YY, example: 09/19/06<br>DDMMMYY, example: 09Sep06                                                 |
| Ti ne     | 24-hour format, 00:00 to 23:59                                                                                                       |

Note that the clock will need to be reset whenever the P/S Board is disconnected from the CPU Board.

#### Security

The transmitter protects its configuration using a 4-digit, numeric password, from 0000 to 9999. When security is active, the "S" (secure) status indicator appears on the Main Display, variables may be read, but not modified, and functions will not execute, including the sensor verification function during startup review.



## Security Control

>Menu>Setup>System>Secure

Security is off by default, and may be toggled on and off by entering the 4-digit password.

SECURITY ►Change\_Pswd Status=OFF

Figure 83 - Security control page

## Activating Security

Select the Status variable on the Security Control page, which doubles as a link to the Password Entry page. When the page appears, select Enter Pswd, scroll to the password value (0 by default), and press Enter. If successful, "PASS" appears briefly and you are returned to the Security Control page where the Status variable is set to ON. If not successful, "FAIL" appears and Status remains OFF.



Figure 84 - Activating security

#### Deactivating Security

The procedure to deactivate security is identical to that used for activating it, and if successful, the transmitter presents an option to automatically reactivate it after a timed interval.



Figure 85 - Deactivating security

## Changing the Password

The security password is changed by selecting Change\_Pswd from the Security Control page. Start by entering the old password, the enter the new one, and repeat it.




## 4.20 Communications

The transmitter supports ASCII, HART 5, and Modbus communications. ASCII is the default protocol if the HART or Modbus option is not ordered.

## Communication Setup



Communication Setup page variables are used to configure the protocol and settings of the physical communication interface. The protocol selection is performed at the factory, and may not be changed. Settings for the physical communication interface may be changed for ASCII and Modbus protocols, however, they are restricted for the HART protocol).

Figure 87 - Communication setup page

| Table 10 | Communication setup variables |
|----------|-------------------------------|
|          |                               |

| Variables | Description                                                                                                                                         |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| Protocol  | The Protocol variable identifies the installed protocol driver:                                                                                     |
|           | None                                                                                                                                                |
|           | ASCII (default)                                                                                                                                     |
|           | Modbus (option)                                                                                                                                     |
|           | HART (option)                                                                                                                                       |
| Interface | The Interface variable selects the physical communication interface that the                                                                        |
|           | transmitter will control during transmit and receive functions:                                                                                     |
|           | RS232 (available for ASCII or Modbus, not for HART)                                                                                                 |
|           | RS485 (available for ASCII or Modbus, not for HART)                                                                                                 |
|           | MODEM (available for HART only)                                                                                                                     |
|           | The transmitter must be wired in accordance with this selection (see Table 3. Communication Interface Options).                                     |
| Baud_Rate | The Baud_Rate variable is used to configure the baud rate of the transmitter's UART, and may be set to: 300,600,1200,2400,4800,9600,14.4k, or 28.8k |
|           | The value is fixed at 1200 for HART protocol, and defaults to 9600 for Modbus and ASCII.                                                            |
| Paranetrs | The Parametrs variable is used to configure parity, the number of data bits, and number of stop bits of the transmitter's UART:                     |
|           | <ul> <li>N,8,1 no parity, 8 data bits, 1 stop bits</li> </ul>                                                                                       |
|           | <ul> <li>N,8,2 no parity, 8 data bits, 2 stop bits</li> </ul>                                                                                       |
|           | <ul> <li>E,8,1even parity, 8 data bits, 1 stop bit</li> </ul>                                                                                       |
|           | <ul> <li>O,8,1odd parity, 8 data bits, 1 stop bit</li> </ul>                                                                                        |
|           | The value is fixed at O, 8,1 for HART protocol, and defaults to N, 8,1 for Modbus and ASCII.                                                        |

Protocol specific settings are configured on separate pages that are accessible from links on the Setup page, and are discussed below.

## <u>ASCII</u>

ASCII is used for sending the data log to a serial printer, terminal, or terminal program, using RS232 (RS485 might be used under certain conditions). Handshaking is XON/XOFF only, and the Communication Setup page may be used to configure the interface, baud rate, and communication variables. See Table 3. Communication Interface Options for details. There are no additional pages for protocol variables.

## <u>HART</u>

HART is a master/slave protocol that supports 1 or 2 masters, and up to 15 slave devices. Devices communicate digitally at an effective rate of 1200 baud by modulating the 4-20mA loop. Modulation is performed by a modem that conforms to the BELL 202 standard, which uses FSK (frequency shift keying), where 1200Hz represents a logic 1, and 2200Hz represents logic 0, and does not affect the loop's DC level. Connections are typically point-to-point, which enables bidirectional digital communication and preserves the transmitter's analog output signal. Up to 15 devices may be connected in a multi-drop configuration for digital communication, but requires each device to fix its output at 4mA. See HART Transmitter connection examples in Wiring Examples, or consult the HART Foundation (www.hartcomm.org) for details on how to connect HART transmitters.

When the HART protocol driver is installed, a link to the HART Setup page appears on the main Setup page.



Figure 88 - Hart setup pages

| Table 20. HART setup variables | s |
|--------------------------------|---|
|--------------------------------|---|

| Variables | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Tag       | The Tag variable can be used as a unique identifier for communicating to the transmitter. The variable is read only at the operator interface, but may be modified using HART network management commands.                                                                                                                                                                                                                                                                              |
| Dev       | The Dev variable displays read-only device information used in long-frame address commands, and by devices capable of utilizing the transmitter's DDL (device description language) file. The format of the information is, MFG_ID/DEV/REV. The MFG_ID is 9f, and identifies Analytical Technology, Inc as the manufacturer. DEV is 7f, and identifies the device as a F12 transmitter. REV is the revision level of the transmitter, currently set at 2 (may increment in the future). |
| Poll_Addr | The Poll_Addr variable sets the polling address of the transmitter. The default value is 0, which allows the transmitter to communicate digitally, while preserving the function of the 4-20mA output. The value may be set from 1 to 15, which fixes the                                                                                                                                                                                                                               |

output at 4mA, and disables analog signaling.

- **Dev\_Id** The Dev\_Id variable is used to form a unique identifier in the HART long frame address. This value is set at the factory, and appears on a label attached to the transmitter. Changing this setting is not recommended.
- **Loop** The Loop variable specifies the operation of the 4-20mA output. When the HART polling address is 0, the value is NOT\_FIX and loop functions as normal. When the address is set to 1 or higher, the value is FIXED and the output is fixed at 4mA. The ability to alter this behavior is reserved for future use, and changing this setting is not recommended.
- **Fixed\_nA** The Fixed\_mA variable provides direct access the associated HART network management variable. The value is adjustable only when the Loop variable is FIXED, and may be adjusted between 3.5 and 22 mA.
- **Resp\_Preanb** The Resp\_Pream variable provides direct access to the associated HART network management variable, which determines the number of preamble characters (FF hex) transmitted at the beginning of each message. The default value is 5, and may be set from 3 to 20. Changing this setting is not recommended.
- **Find-Me** The Find-Me function places the transmitter into the Find-Me mode, where a master device can issue a command to positively identify the physical location of the transmitter.

Selecting the Find-Me function presents the special page that remains until the master device issues a "Find-Me" command to the transmitter, at which point the display changes to the "Device Found" page.





Figure 89 = Hart a) Find-me and b) Device found pages

## Modbus

Modbus is a master/slave protocol that supports a single master, and up to 247 slave devices on a common bus. The RS485 interface physically limits this number to 32 (1 master, 31 slaves), and RS232 restricts communication to a master and a single slave. The Communication Setup page may be used to configure the interface, baud rate, and communication variables. See Wiring Examples for connection details.

When the Modbus protocol driver is installed, a link to the Modbus Setup page appears on the main Setup page.

| >Menu >Setup                                                           | >Menu >Setup >Modbus                         |
|------------------------------------------------------------------------|----------------------------------------------|
| Sensor DataLog<br>Al arms Di spl ay<br>Auto-T System<br>4-20mA ≻Modbus | Modbus Setup<br>▶Slave_Addr=1<br>Tine_Out= 3 |

Figure 90 - Modbus setup page

 Table 21. Modbus setup variables

| Variables  | Description                                                                                                                                                                                                                |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Slave_Addr | The Slave_Addr variable is the transmitter's slave address, which may set from 1 (default) to 247.                                                                                                                         |
| Ti ne_Out  | The Time_Out variable belongs to the data-link layer of the protocol and defines the number of 1.5 character timeouts used to frame messages. This variable is reserved for future use and changing it is not recommended. |

Transmitter Version

The Transmitter Version page displays transmitter information:



[protocol option] HW=X.XX SW=X.XX

MMY DD/YY

Line 1: model and version name Line 2: protocol option (if any) Line 3: hardware and software version numbers Line 4: software build date

Figure 91 - Transmitter version page

#### Restart

The Restart function will cause the transmitter to start up, just as it does during a power-on-reset.

## <u>Resets</u>

The Reset page provides functions for resetting configuration memories, and restarting the transmitter, which may prove useful for correcting specific faults. These functions should <u>not be</u> <u>used</u> unless they are specified in troubleshooting procedures, or directed by authorized factory personnel.

| >Menu>Setup>System>Reset                         |          |
|--------------------------------------------------|----------|
| Reset Functions<br>≻Sensor DataLog<br>Alarns All |          |
| 4-20n Restart                                    | Figure 9 |

Figure 92 - System reset page

Table 22. Reset functions (do not use except for troubleshooting).

| Function        | Description                                                                                                                                                         |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sensor          | Resets zero and span calibration, restarts transmitter. Sensor must be completely recalibrated. On LEL transmitters, calibration and Auto-test history are cleared. |
| Al ar <b>ns</b> | Resets alarm set/reset points, options, delays, and inhibit_mA, restarts transmitter.                                                                               |
| <b>4-20m</b>    | Resets 4-20mA calibration, loop must be recalibrated, restarts transmitter.                                                                                         |
| DataLog         | Clears the data log history, restarts transmitter.                                                                                                                  |
| A1 1            | Resets entire transmitter to factory defaults, excluding sensor, restarts transmitter.<br>Requires full transmitter setup.                                          |
| Restart         | Restarts transmitter, only.                                                                                                                                         |



| Part No. | Description                                            |
|----------|--------------------------------------------------------|
| 03-0355  | F12 Transmitter Front Lid Assembly                     |
| 01-0278  | Sensor Terminal Board Assembly                         |
| 03-0331  | F12 Sensor Holder Assembly                             |
| 03-0332  | Sensor Cap                                             |
| 00-1537  | Auto-Test Generator Holder Assembly                    |
| 01-0294  | Power Supply / Relay Board Assy, AC Version            |
| 01-0316  | Power Supply / Relay Board Assy, DC Version            |
| 01-0297  | Power Supply Circuit Protection Cover                  |
| 31-0173  | Ribbon Cable, P/S to Front Lid, 20 conductor           |
| 29-0007  | Battery                                                |
| 00-1056  | Calibration adapter                                    |
| 00-1251  | * Flowcell Assembly                                    |
| 03-0118  | Flowcell Sensor Cap                                    |
| 00-1546  | Complete Junction Box with Sensor Holder               |
| 01-0295  | Remote Sensor PCB Assy                                 |
| 31-0162  | Remote Interconnect Cable, specify length, max. 50 ft. |
| 00-1547  | 6' Sensor Housing Assembly                             |
| 00-1571  | Heated Sensor Housing Assembly                         |

\*Requires Flowcell Sensor Cap (03-0118)

| Part No.         Description           00-1057         Acetylene, 0-50/500 PPM (200 PPM Standard)           00-1043         Alcohol, 0-50/500 PPM (200 PPM Standard)           00-1044         Alcohol, 0-50/500 PPM (200 PPM Standard)           00-1014         Alcohol, 0-50/500 PPM (200 PPM Standard)           00-1014         Armonia, 0-50/500 PPM (100 PPM Standard)           00-1025         Arsine, 0-10/200 PPM (100 PPM Standard)           00-1024         Arsine, 0-50/2000 PPB (1000 PPM Standard)           00-1025         Arsine, 0-50/2000 PPM (200 PPM Standard)           00-1012         Carbon monoxide, 0-50/1000 PPM (200 PPM Standard)           00-1012         Carbon monoxide, 0-55/200 (20 PPM Standard)           00-1025         Chlorine dioxide, -05/200 (20 PPM Standard)           00-1025         Chlorine dioxide, 20/5200 (20 PPM Standard)           00-1025         Chlorine dioxide, 20/200 PPM (100 PPM Standard)           00-1026         Chlorine, 0-5/200 (20 PPM Standard)           00-1027         Diborane, 0-10/200 PPM (100 PPM Standard)           00-1026         Diborane, 0-500/2000 PPM (1000 PPM Standard)           00-1039         Ethylene oxide, 0-20/200 PPM (1000 PPM Standard)           00-1040         Formaldehyde, 0-20/200 PPM (1000 PPM Standard)           00-1050         Fluorine, 0-1/5 PPM (2 PPM Standard)     <                                                      | Table    | 23. H10 sensor modules                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------------------------------------|
| 00-1038         Acid gases, 0-10/200 PPM (20 PPM Standard)           00-1044         Alcohol, 0-50/500 PPM (200 PPM Standard)           00-1010         Ammonia, 0-50/500 PPM (200 PPM Standard)           00-1011         Ammonia, 0-50/500 PPM (1000 PPM Standard)           00-1024         Arsine, 0-10/200 PPM (100 PPM Standard)           00-1024         Arsine, 0-150/200 PPM (10 PPM Standard)           00-1024         Arsine, 0-50/200 (20 PPM Standard)           00-1025         Arsine, 0-50/200 (20 PPM Standard)           00-1012         Carbon monoxide, 0-50/1000 PPM (200 PPM Standard)           00-1024         Chlorine dioxide, 0-5/200 (20 PPM Standard)           00-1025         Chlorine dioxide, 0-5/200 (20 PPM Standard)           00-1035         Chlorine, 0-1/5 PPM (2 PPM Standard)           00-1035         Chlorine, 0-1/5 PPM (20 PPM Standard)           00-1037         Chlorine, 0-1/5 PPM (20 PPM Standard)           00-1038         Chlorine, 0-1/200 PPM (1000 PPM Standard)           00-1037         Chlorine, 0-1/200 PPM (100 PPM Standard)           00-1039         Ethylene oxide, 0-20/200 PPM (100 PPM Standard)           00-1040         Formaldehyde, 0-20/200 PPM (100 PPM Standard)           00-1039         Ethylene oxide, 0-10/200 PPM (100 PPM Standard)           00-1049         Formaldehyde, 50/0/2000 PPM (100 PPM Standard)                                                 | Part No. | Description                                   |
| 00-1043         Alcohol, 0-50/500 PPM (200 PPM Standard)           00-1044         Alcohol, 0-500/2000 PPM (200 PPM Standard)           00-1011         Ammonia, 0-500/2000 PPM (100 PPM Standard)           00-1012         Arsine, 0-10/200 PPM (100 PPM Standard)           00-1025         Arsine, 0-500/2000 PPB (1000 PPB Standard)           00-1024         Arsine, 0-500/2000 PPB (1000 PPB Standard)           00-1000         Bromine, 0-1/5 PPM (2 PPM Standard)           00-1001         Carbon monoxide, 0-50/1000 PPM (200 PPM Standard)           00-1002         Chlorine dioxide, 0-5/200 (20 PPM Standard)           00-1005         Chlorine dioxide, 0-5/200 (20 PPM Standard)           00-1026         Chlorine dioxide, 200/1000 PPM (1000 PPM Standard)           00-1027         Diborane, 0-10/200 PPM (10 PPM Standard)           00-1026         Diborane, 0-10/200 PPM (10 PPM Standard)           00-1027         Diborane, 0-500/2000 PPB (1000 PPB Standard)           00-1028         Dimethylamine (DMA), 100/200 PPM (20 PPM Standard)           00-1039         Ethylene oxide, 0-20/200 PPM (20 PPM Standard)           00-1040         Formaldehyde, 500/2000 PPM (20 PPM Standard)           00-1039         Germane, 0-50/2000 PPM (20 PPM Standard)           00-1040         Formaldehyde, 500/2000 PPM (20 PPM Standard)           00-1041         Fydro                                                 | 00-1057  | Acetylene, 0-50/500 PPM (0-200 PPM Standard)  |
| 00-1044         Alcohol, 0-500/2000 PPM (200 PPM Standard)           00-1011         Ammonia, 0-500/2000 PPM (1000 PPM Standard)           00-1025         Arsine, 0-10/200 PPM (100 PPM Standard)           00-1024         Arsine, 0-500/2000 PPM (100 PPM Standard)           00-1024         Arsine, 0-500/2000 PPM (100 PPM Standard)           00-1024         Arsine, 0-5/200 (20 PPM Standard)           00-1012         Carbon monoxide, 0-50/1000 PPM Standard)           00-1025         Chlorine dioxide, 0-1/5 PPM (2 PPM Standard)           00-1035         Chlorine dioxide, 0-1/5 PPM (2 PPM Standard)           00-1042         Chlorine dioxide, 100 PPM (100 PPM Standard)           00-1025         Chlorine, 0-5/200 (20 PPM Standard)           00-1030         Chlorine, 0-5/200 (20 PPM Standard)           00-1032         Chlorine, 0-5/200 (20 PPM Standard)           00-1032         Diborane, 0-10/200 PPM (10 PPM Standard)           00-1045         Dimethylamine (DMA), 100/200 PPM (100 PPM Standard)           00-1039         Ethylene oxide, 0-20/200 PPM (10 PPM Standard)           00-1040         Formaldehyde, 500/2000 PPM (10 PPM Standard)           00-10415         Formaldehyde, 500/2000 PPM (10 PPM Standard)           00-1028         Germane, 0-10/200 PPM (10 PPM Standard)           00-1029         Germane, 0-10/200 PPM (20 PPM Standard)                                                 | 00-1038  | Acid gases, 0-10/200 PPM (20 PPM Standard)    |
| 00-1010         Ammonia, 0-50/2000 PPM (200 PPM Standard)           00-1011         Ammonia, 0-500/2000 PPM (1000 PPM Standard)           00-1024         Arsine, 0-500/2000 PPB (1000 PPB Standard)           00-1024         Arsine, 0-500/2000 PPB (1000 PPB Standard)           00-1005         Bromine, 0-1/5 PPM (2 PPM Standard)           00-1012         Carbon monoxide, 0-50/200 (20 PPM Standard)           00-1004         Chlorine dioxide, 0-1/5 PPM (2 PPM Standard)           00-1025         Chlorine dioxide, 1/5 PPM (1000 PPM Standard)           00-1026         Chlorine, 0-1/5 PPM (2 PPM Standard)           00-1027         Diborane, 0-10/200 PPM (100 PPM Standard)           00-1026         Diborane, 0-500/2000 PPM (100 PPM Standard)           00-1027         Diborane, 0-500/2000 PPM (100 PPM Standard)           00-1026         Diborane, 0-10/200 PPM (100 PPM Standard)           00-1039         Ethylene oxide, 0-20/200 PPM (20 PPM Standard)           00-1045         Fluorine, 0-1/5 PPM (2 PPM Standard)           00-1040         Formaldehyde, 500/2000 PPM (100 PPM Standard)           00-1040         Formaldehyde, 500/2000 PPM (20 PPM Standard)           00-1042         Germane, 0-10/200 PPM (100 PPM Standard)           00-1045         Hydrogen bromide, 10/200 PPM (20 PPM Standard)           00-1042         Germane, 0-10/200 PPM (2                                                 | 00-1043  | Alcohol, 0-50/500 PPM (200 PPM Standard)      |
| 00-1011Ammonia, 0-500/2000 PPM (100 PPM Standard)00-1025Arsine, 0-10/200 PPM (10 PPM Standard)00-1025Arsine, 0-50/2000 PPB (1000 PPB Standard)00-1000Bromine, 0-5/200 (20 PPM Standard)00-1011Carbon monoxide, 0-50/1000 PPM (200 PPM Standard)00-1025Chlorine dioxide, 0-5/200 (20 PPM Standard)00-1035Chlorine dioxide, 0-5/200 (20 PPM Standard)00-10425Chlorine dioxide, 20/1000 PPM (1000 PPM Standard)00-1055Chlorine dioxide, 20/1000 PPM (1000 PPM Standard)00-1002Chlorine, 0-5/200 (20 PPM Standard)00-1003Chlorine, 0-5/200 (20 PPM Standard)00-1026Diborane, 0-10/200 PPM (10 PPM Standard)00-1026Diborane, 0-500/2000 PPB (1000 PPB Standard)00-1026Diborane, 0-20/200 PPM (20 PPM Standard)00-1036Ethylene oxide, 0-20/200 PPM (20 PPM Standard)00-10450Ethylene oxide, 0-20/200 PPM (20 PPM Standard)00-1056Fluorine, 0-5/200 (20 PPM Standard)00-1067Fluorine, 0-5/200 (20 PPM Standard)00-1078Formaldehyde, 500/2000 PPM (100 PPM Standard)00-1039Germane, 0-10/200 PPM (20 PPM Standard)00-1045Hydrogen bromide, 10/200 PPM (20 PPM Standard)00-1045Hydrogen cyanide, 0-10/200 PPM (20 PPM Standard)00-1045Hydrogen genzvide, 0-10/200 PPM (20 PPM Standard)00-1044Hydrogen selenide, 0-10/200 PPM (20 PPM Standard)00-1045Hydrogen selenide, 0-10/200 PPM (20 PPM Standard)00-1046Hydrogen selenide, 0-10/200 PPM (20 PPM Standard)00-1030Hydrogen s                                                                               | 00-1044  | Alcohol, 0-500/2000 PPM (2000 PPM Standard)   |
| 00-1025Arsine, 0-10/200 PPM (10 PPM Standard)00-1024Arsine, 0-500/2000 PPB (1000 PPB Standard)00-1012Bromine, 0-1/5 PPM (2 PPM Standard)00-1012Carbon monoxide, 0-50/1000 PPM (200 PPM Standard)00-1012Carbon monoxide, 0-50/1000 PPM (200 PPM Standard)00-1012Carbon monoxide, 0-50/200 (20 PPM Standard)00-1004Chlorine dioxide, 0-5/200 (20 PPM Standard)00-1425Chlorine dioxide, 1/5 PPM (0w Cl2 response)00-1359Chlorine, 0-1/5 PPM (2 PPM Standard)00-1003Chlorine, 0-5/200 (20 PPM Standard)00-1003Chlorine, 0-5/200 (20 PPM Standard)00-1027Diborane, 0-500/2000 PPB (1000 PPB Standard)00-1030Ethylene oxide, 0-20/200 PPM (100 PPB Standard)00-1040Dimethylamine (DMA), 100/200 PPM (100 PPM Standard)00-1039Ethylene oxide, 0-20/200 PPM (20 PPM Standard)00-1040Formaldehyde, 0-20/200 PPM (20 PPM Standard)00-1040Formaldehyde, 0-20/200 PPM (1000 PPM Standard)00-1028Germane, 0-10/200 PPM (100 PPM Standard)00-1028Germane, 0-500/2000 PPM (100 PPM Standard)00-1039Hydrogen choride, 0-10/200 PPM (20 PPM Standard)00-10415Hydrogen choride, 0-10/200 PPM (20 PPM Standard)00-1042Germane, 0-500/2000 PPM (20 PPM Standard)00-1043Hydrogen eroxide, 0-10/200 PPM (20 PPM Standard)00-1044Hydrogen selenide, 0-10/200 PPM (20 PPM Standard)00-1045Hydrogen selenide, 0-10/200 PPM (20 PPM Standard)00-1046Hydrogen selenide, 0-10/200 PPM (100 PPM Standard)00-1                                                                      | 00-1010  | Ammonia, 0-50/500 PPM (200 PPM Standard)      |
| 00-1024Arsine, 0-500/2000 PPB (1000 PPB Standard)00-1000Bromine, 0-1/5 PPM (2 PPM Standard)00-1011Carbon monoxide, 0-50/1000 PPM (200 PPM Standard)00-1012Carbon monoxide, 0-5/200 (20 PPM Standard)00-1004Chlorine dioxide, 0-1/5 PPM (2 PPM Standard)00-1025Chlorine dioxide, 1/5 PPM (20 PPM Standard)00-1425Chlorine dioxide, 200/1000 PPM (1000 PPM Standard)00-1026Chlorine, 0-1/5 PPM (2 PPM Standard)00-1027Diborane, 0-10/200 PPM (100 PPM Standard)00-1026Diborane, 0-500/2000 PPB (1000 PPB Standard)00-1027Diborane, 0-500/2000 PPM (20 PPM Standard)00-1039Ethylene oxide, 0-20/200 PPM (20 PPM Standard)00-1045Dimethylamine (DMA), 100/200 PPM (100 PPM Standard)00-1039Ethylene oxide, 0-20/200 PPM (20 PPM Standard)00-1040Formaldehyde, 500/2000 PPM (100 PPM Standard)00-1040Formaldehyde, 500/2000 PPM (100 PPM Standard)00-1023Germane, 0-500/2000 PPB (1000 PPB Standard)00-1024Germane, 0-500/2000 PPM (20 PPM Standard)00-1035Hydrogen cyanide, 0-10/200 PPM (20 PPM Standard)00-1041Hydrogen eproxide, 0-10/200 PPM (20 PPM Standard)00-1042Hydrogen peroxide, 0-10/200 PPM (20 PPM Standard)00-1043Hydrogen peroxide, 0-10/200 PPM (20 PPM Standard)00-1044Hydrogen selenide, 0-500/2000 PPM (500 PPM Standard)00-1045Hydrogen selenide, 0-500/2000 PPM (100 PPM Standard)00-1046Hydrogen selenide, 0-10/200 PPM (20 PPM Standard)00-1047Hydrogen selenide, 0-10/200 PPM                                                    | 00-1011  | Ammonia, 0-500/2000 PPM (1000 PPM Standard)   |
| 00-1000Bromine, 0-1/5 PPM (2 PPM Standard)00-1001Bromine, 0-5/200 (20 PPM Standard)00-1004Chlorine dioxide, 0-5/200 (20 PPM Standard)00-1005Chlorine dioxide, 0-5/200 (20 PPM Standard)00-1425Chlorine dioxide, 200/1000 PPM (1000 PPM Standard)00-1359Chlorine, 0-1/5 PPM (2 PPM Standard)00-1002Chlorine, 0-5/200 (20 PPM Standard)00-1003Chlorine, 0-5/200 (20 PPM Standard)00-1026Diborane, 0-10/200 PPM (10 PPM Standard)00-1027Diborane, 0-10/200 PPM (10 PPM Standard)00-1038Ethylene oxide, 0-20/200 PPM (100 PPM Standard)00-1049Ethylene oxide, 0-20/200 PPM (20 PPM Standard)00-1039Ethylene oxide, 0-20/200 PPM (20 PPM Standard)00-1040Formaldehyde, 500/2000 PPM (100 PPM Standard)00-1041Formaldehyde, 500/2000 PPM (100 PPM Standard)00-1028Germane, 0-10/200 PPM (20 PPM Standard)00-1017Hydrogen cyanide, 0-10/200 PPM (20 PPM Standard)00-1018Hydrogen cyanide, 0-10/200 PPM (20 PPM Standard)00-1019Hydrogen selenide, 0-10/200 PPM (20 PPM Standard)00-1019Hydrogen selenide, 0-10/200 PPM (500 PPM Standard)00-1031Hydrogen selenide, 0-10/200 PPM (500 PPM Standard)00-1032Hydrogen sulfide, 0-10/200 PPM (500 PPM Standard)00-1034Hydrogen selenide, 0-10/200 PPM (500 PPM Standard)00-1034Hydrogen selenide, 0-50/2000 PPM (500 PPM Standard)00-1034Hydrogen selenide, 0-10/200 PPM (500 PPM Standard)00-1034Hydrogen sulfide, 200/1000 PPM (500 PPM Standard)<                                                              | 00-1025  | Arsine, 0-10/200 PPM (10 PPM Standard)        |
| 00-1001Bromine, 0-5/200 (20 PPM Standard)00-1012Carbon monoxide, 0-50/1000 PPM (200 PPM Standard)00-1013Chlorine dioxide, 0-1/5 PPM (2 PPM Standard)00-1425Chlorine dioxide, 1/5 PPM (Iow Cl2 response)00-1359Chlorine, 0.1/5 PPM (2 PPM Standard)00-1030Chlorine, 0.1/5 PPM (2 PPM Standard)00-1031Chlorine, 0.1/5 PPM (2 PPM Standard)00-1032Chlorine, 0.1/5 PPM (2 PPM Standard)00-1033Chlorine, 0.1/5 PPM (2 PPM Standard)00-1044Diborane, 0-50/2000 PPB (1000 PPB Standard)00-1054Diborane, 0.50/2000 PPM (20 PPM Standard)00-1055Ethylene oxide, 0-20/200 PPM (20 PPM Standard)00-106Fluorine, 0-5/200 (20 PPM Standard)00-107Fluorine, 0-5/200 (20 PPM Standard)00-108Ethylene oxide, 0-20/200 PPM (20 PPM Standard)00-109Germane, 0-500/2000 PPM (100 PPM Standard)00-1029Germane, 0-500/2000 PPM (100 PPM Standard)00-1028Germane, 0-10/200 PPM (20 PPM Standard)00-1017Hydrogen bromide, 10/200 PPM (20 PPM Standard)00-1018Hydrogen peroxide, 0-10/200 PPM (20 PPM Standard)00-1019Hydrogen peroxide, 0-10/200 PPM (20 PPM Standard)00-1042Hydrogen selenide, 0-10/200 PPM (10 PPM Standard)00-1043Hydrogen selenide, 0-10/200 PPM (20 PPM Standard)00-1044Hydrogen selenide, 0-500/2000 PPM (500 PPM Standard)00-1045Hydrogen selenide, 0-50/2000 PPM (500 PPM Standard)00-1046Hydrogen selenide, 0-50/2000 PPM (500 PPM Standard)00-1031Hydrogen, 0-1/5 PP                                                                               | 00-1024  |                                               |
| 00-1012Carbon monoxide, 0-50/1000 PPM (200 PPM Standard)00-1004Chlorine dioxide, 0-1/5 PPM (2 PPM Standard)00-1005Chlorine dioxide, 0-5/200 (20 PPM Standard)00-1359Chlorine dioxide, 200/1000 PPM (1000 PPM Standard)00-1002Chlorine, 0-1/5 PPM (2 PPM Standard)00-1003Chlorine, 0-5/200 (20 PPM Standard)00-1026Diborane, 0-10/200 PPM (10 PPM Standard)00-1027Diborane, 0-500/2000 PPB (1000 PPB Standard)00-1026Dimethylamine (DMA), 100/200 PPM (100 PPM Standard)00-1039Ethylene oxide, 0-20/200 PPM (20 PPM Standard)00-1046Fluorine, 0-1/5 PPM (2 PPM Standard)00-1057Fluorine, 0-5/200 (20 PPM Standard)00-1068Fluorine, 0-50/200 (20 PPM Standard)00-1070Fluorine, 0-50/200 (20 PPM Standard)00-108Germane, 0-50/2000 PPM (20 PPM Standard)00-1099Germane, 0-10/200 PPM (100 PPM Standard)00-1012Germane, 0-50/02000 PPM (20 PPM Standard)00-1013Hydrogen chloride, 0-10/200 PPM (20 PPM Standard)00-1014Hydrogen peroxide, 0-10/200 PPM (20 PPM Standard)00-1015Hydrogen peroxide, 0-10/200 PPM (20 PPM Standard)00-1024Hydrogen peroxide, 0-10/200 PPM (20 PPM Standard)00-1035Hydrogen selenide, 0-10/200 PPM (20 PPM Standard)00-1042Hydrogen selenide, 0-10/200 PPM (20 PPM Standard)00-1031Hydrogen selenide, 0-500/2000 PPM (500 PPM Standard)00-1031Hydrogen sulfide, 0-10/200 PPM (500 PPM Standard)00-1031Hydrogen sulfide, 0-10/200 PPM (500 PPM Standard)0                                                                      |          |                                               |
| 00-1004Chlorine dioxide, 0-1/5 PPM (2 PPM Standard)00-1005Chlorine dioxide, 0-5/200 (20 PPM Standard)00-1359Chlorine dioxide, 200/1000 PPM (1000 PPM Standard)00-1002Chlorine, 0-1/5 PPM (2 PPM Standard)00-1003Chlorine, 0-5/200 (20 PPM Standard)00-1026Diborane, 0-10/200 PPM (100 PPM Standard)00-1037Diborane, 0-10/200 PPM (100 PPM Standard)00-1046Diborane, 0-10/200 PPM (100 PPM Standard)00-1056Diborane, 0-10/200 PPM (20 PPM Standard)00-1047Dimethylamine (DMA), 100/200 PPM (100 PPM Standard)00-1039Ethylene oxide, 0-20/200 PPM (20 PPM Standard)00-1040Fluorine, 0-15/200 (20 PPM Standard)00-1040Formaldehyde, 0-20/200 PPM (20 PPM Standard)00-1040Formaldehyde, 0-20/200 PPM (100 PPM Standard)00-1028Germane, 0-10/200 PPM (100 PPM Standard)00-1029Germane, 0-10/200 PPM (20 PPM Standard)00-1017Hydrogen cyanide, 0-10/200 PPM (20 PPM Standard)00-1018Hydrogen peroxide, 0-10/200 PPM (20 PPM Standard)00-1019Hydrogen peroxide, 0-10/200 PPM (10 PPM Standard)00-1014Hydrogen selenide, 0-10/200 PPM (10 PPM Standard)00-1030Hydrogen selenide, 0-10/200 PPM (20 PPM Standard)00-1041Hydrogen selenide, 0-10/200 PPM (20 PPM Standard)00-1031Hydrogen selenide, 0-500/2000 PPM (100 PPM Standard)00-1031Hydrogen selenide, 0-50/2000 PPM (100 PPM Standard)00-1031Hydrogen, 0-5/200 PPM (20 PPM Standard)00-1032Nitric oxide, 0-50/500 PPM (20 PPM Standard) <tr< td=""><td></td><td></td></tr<>                             |          |                                               |
| 00-1005Chlorine dioxide, 0-5/200 (20 PPM Standard)00-1425Chlorine dioxide, 1/5 PPM (low Cl2 response)00-1359Chlorine, 0-1/5 PPM (2 PPM Standard)00-1002Chlorine, 0-1/5 PPM (2 PPM Standard)00-1003Chlorine, 0-10/200 PPM (10 PPM Standard)00-1027Diborane, 0-500/2000 PPB (1000 PPB Standard)00-1026Diborane, 0-50/2000 PPB (1000 PPB Standard)00-1027Diborane, 0-10/200 PPM (100 PPM Standard)00-1028Ethylene oxide, 0-20/200 PPM (20 PPM Standard)00-1039Ethylene oxide, 0-20/200 PPM (20 PPM Standard)00-1040Formaldehyde, 0-20/200 PPM (20 PPM Standard)00-1040Formaldehyde, 500/2000 PPM (100 PPM Standard)00-1029Germane, 0-10/200 PPM (100 PPM Standard)00-1029Germane, 0-10/200 PPM (100 PPB Standard)00-1017Hydrogen chloride, 0-10/200 PPM (20 PPM Standard)00-1018Hydrogen cyanide, 0-10/200 PPM (20 PPM Standard)00-1019Hydrogen peroxide, 0-10/200 PPM (20 PPM Standard)00-1031Hydrogen peroxide, 0-10/200 PPM (20 PPM Standard)00-1031Hydrogen selenide, 0-10/200 PPM (500 PPM Standard)00-1031Hydrogen selenide, 0-10/200 PPM (500 PPM Standard)00-1031Hydrogen sulfide, 0-10/200 PPM (500 PPM Standard)00-1031Hydrogen sulfide, 0-10/200 PPM (500 PPM Standard)00-1031Hydrogen, 0-1/10% (4% Standard)00-1031Hydrogen, 0-50/2000 PPM (20 PPM Standard)00-1032Nitric oxide, 0-50/500 PPM (20 PPM Standard)00-1034Hydrogen, 0-1/10% (4% Standard)00-1035Oz                                                                               |          |                                               |
| 00-1425Chlorine dioxide, 1/5 PPM (low Cl2 response)00-1359Chlorine dioxide, 200/1000 PPM (1000 PPM Standard)00-1003Chlorine, 0-5/200 (20 PPM Standard)00-1027Diborane, 0-500/2000 PPM (10 PPM Standard)00-1026Diborane, 0-500/2000 PPM (100 PPB Standard)00-1027Diborane, 0-500/2000 PPM (100 PPM Standard)00-1039Ethylene oxide, 0-20/200 PPM (20 PPM Standard)00-1046Fluorine, 0-1/5 PPM (2 PPM Standard)00-1007Fluorine, 0-5/200 (20 PPM Standard)00-108Formaldehyde, 500/2000 PPM (1000 PPM Standard)00-109Germane, 0-500/2000 PPM (1000 PPM Standard)00-1028Germane, 0-500/2000 PPM (1000 PPM Standard)00-1029Germane, 0-500/2000 PPM (20 PPM Standard)00-1028Germane, 0-10/200 PPM (20 PPM Standard)00-1017Hydrogen bromide, 10/200 PPM (20 PPM Standard)00-1018Hydrogen cyanide, 0-10/200 PPM (20 PPM Standard)00-1019Hydrogen geroxide, 0-10/200 PPM (20 PPM Standard)00-1031Hydrogen peroxide, 0-10/200 PPM (20 PPM Standard)00-1031Hydrogen selenide, 0-10/200 PPM (500 PPM Standard)00-1031Hydrogen selenide, 0-10/200 PPM (500 PPM Standard)00-1031Hydrogen sulfide, 0-10/200 PPM (200 PPM Standard)00-1031Hydrogen, 0-5/500 PPM (200 PPM Standard)00-1032Nitric oxide, 0-50/500 PPM (200 PPM Standard) </td <td></td> <td></td>                                  |          |                                               |
| 00-1359Chlorine dioxide, 200/1000 PPM (1000 PPM Standard)00-1002Chlorine, 0-15 PPM (2 PPM Standard)00-1027Diborane, 0-10/200 PPM (10 PPM Standard)00-1026Diborane, 0-500/2000 PPB (1000 PPB Standard)00-1027Diborane, 0-10/200 PPM (100 PPM Standard)00-1039Ethylene oxide, 0-20/200 PPM (20 PPM Standard)00-1039Ethylene oxide, 0-20/200 PPM (20 PPM Standard)00-1039Ethylene oxide, 0-20/200 PPM (20 PPM Standard)00-1040Formaldehyde, 0-20/200 PPM (20 PPM Standard)00-1040Formaldehyde, 0-20/200 PPM (100 PPM Standard)00-1040Formaldehyde, 0-20/200 PPM (100 PPM Standard)00-1028Germane, 0-10/200 PPM (100 PPM Standard)00-1028Germane, 0-500/2000 PPM (20 PPM Standard)00-1017Hydrogen bromide, 0-10/200 PPM (20 PPM Standard)00-1018Hydrogen cyanide, 0-10/200 PPM (20 PPM Standard)00-1019Hydrogen peroxide, 0-10/200 PPM (20 PPM Standard)00-1029Hydrogen selenide, 0-10/200 PPM (20 PPM Standard)00-1030Hydrogen selenide, 0-10/200 PPM (100 PPM Standard)00-1041Hydrogen selenide, 0-10/200 PPM (500 PPM Standard)00-1030Hydrogen sulfide, 200/1000 PPM (500 PPM Standard)00-1031Hydrogen sulfide, 200/1000 PPM (500 PPM Standard)00-1031Hydrogen, 0-1/10% (4% Standard)00-1031Hydrogen, 0-5/2500 PPM (20 PPM Standard)00-1032Nitric oxide, 0-50/500 PPM (20 PPM Standard)00-1033Iodine, 0-1/5 PPM (2 PPM Standard)00-1041Hydrogen, 0-5/25% (25% Standard)00-1032 <td></td> <td></td>                                                     |          |                                               |
| 00-1002         Chlorine, 0-1/5 PPM (2 PPM Standard)           00-1003         Chlorine, 0-5/200 (20 PPM Standard)           00-1026         Diborane, 0-50/200 PPM (10 PPM Standard)           00-1027         Diborane, 0-50/200 PPM (100 PPB Standard)           00-1026         Diborane, 0-50/200 PPM (100 PPM Standard)           00-1450         Dimethylamine (DMA), 100/200 PPM (100 PPM Standard)           00-1039         Ethylene oxide, 0-20/200 PPM (20 PPM Standard)           00-1040         Formaldehyde, 0-20/200 PPM (100 PPM Standard)           00-1040         Formaldehyde, 500/2000 PPM (100 PPM Standard)           00-1029         Germane, 0-10/200 PPM (100 PPB Standard)           00-1028         Germane, 0-500/2000 PPB (1000 PPB Standard)           00-1028         Germane, 0-10/200 PPM (20 PPM Standard)           00-1017         Hydrogen bromide, 10/200 PPM (20 PPM Standard)           00-1018         Hydrogen cyanide, 0-10/200 PPM (20 PPM Standard)           00-1019         Hydrogen peroxide, 200/2000 PPM (20 PPM Standard)           00-1024         Hydrogen selenide, 0-10/200 PPM (20 PPM Standard)           00-1031         Hydrogen selenide, 0-10/200 PPM (500 PPM Standard)           00-1031         Hydrogen sulfide, 200/1000 PPM (500 PPM Standard)           00-1030         Hydrogen sulfide, 200/1000 PPM (500 PPM Standard)           00-                                        |          |                                               |
| 00-1003         Chlorine, 0-5/200 (20 PPM Standard)           00-1027         Diborane, 0-10/200 PPM (100 PPM Standard)           00-1026         Diborane, 0-500/2000 PPB (1000 PPB Standard)           00-1139         Ethylene oxide, 0-20/200 PPM (20 PPM Standard)           00-1039         Ethylene oxide, 0-20/200 PPM (20 PPM Standard)           00-1039         Fluorine, 0-1/5 PPM (2 PPM Standard)           00-1040         Formaldehyde, 0-20/200 PPM (20 PPM Standard)           00-1040         Formaldehyde, 500/2000 PPM (1000 PPM Standard)           00-1028         Germane, 0-10/200 PPM (10 PPM Standard)           00-1028         Germane, 0-500/2000 PPB (1000 PPB Standard)           00-1040         Formaldehyde, 0-10/200 PPM (20 PPM Standard)           00-1028         Germane, 0-10/200 PPM (20 PPM Standard)           00-1017         Hydrogen choride, 0-10/200 PPM (20 PPM Standard)           00-1018         Hydrogen cyanide, 0-10/200 PPM (20 PPM Standard)           00-1019         Hydrogen peroxide, 0-10/200 PPM (20 PPM Standard)           00-1020         Hydrogen selenide, 0-10/200 PPM (500 PPM Standard)           00-1031         Hydrogen selenide, 0-500/2000 PPM (500 PPM Standard)           00-1030         Hydrogen sulfide, 200/1000 PPM (500 PPM Standard)           00-1031         Hydrogen sulfide, 200/1000 PPM (500 PPM Standard)           <                                    |          |                                               |
| 00-1027         Diborane, 0-10/200 PPM (10 PPM Standard)           00-1026         Diborane, 0-500/2000 PPB (1000 PPB Standard)           00-11450         Dimethylamine (DMA), 100/200 PPM (100 PPM Standard)           00-1039         Ethylene oxide, 0-20/200 PPM (20 PPM Standard)           00-1040         Fluorine, 0-5/200 (20 PPM Standard)           00-1040         Formaldehyde, 0-20/200 PPM (20 PPM Standard)           00-1040         Formaldehyde, 0-20/200 PPM (100 PPM Standard)           00-1040         Formaldehyde, 0-20/200 PPM (100 PPM Standard)           00-1040         Formaldehyde, 0-20/200 PPM (20 PPM Standard)           00-1040         Formaldehyde, 0-20/200 PPM (20 PPM Standard)           00-1028         Germane, 0-500/2000 PPM (20 PPM Standard)           00-1028         Germane, 0-10/200 PPM (20 PPM Standard)           00-1017         Hydrogen cyanide, 0-10/200 PPM (20 PPM Standard)           00-1017         Hydrogen peroxide, 0-10/200 PPM (20 PPM Standard)           00-1018         Hydrogen peroxide, 0-10/200 PPM (20 PPM Standard)           00-1042         Hydrogen peroxide, 0-10/200 PPM (20 PPM Standard)           00-1031         Hydrogen sulfide, 0-10/200 PPM (500 PPM Standard)           00-1032         Hydrogen sulfide, 200/1000 PPM (500 PPM Standard)           00-1034         Hydrogen sulfide, 200/1000 PPM (500 PPM Standard)      <                            |          |                                               |
| 00-1026Diborane, 0-500/2000 PPB (1000 PPB Standard)00-1450Dimethylamine (DMA), 100/200 PPM (100 PPM Standard)00-1039Ethylene oxide, 0-20/200 PPM (20 PPM Standard)00-1006Fluorine, 0-1/5 PPM (2 PPM Standard)00-1007Fluorine, 0-5/200 (20 PPM Standard)00-1040Formaldehyde, 500/2000 PPM (100 PPM Standard)00-1040Formaldehyde, 500/2000 PPM (100 PPM Standard)00-1040Germane, 0-10/200 PPM (100 PPM Standard)00-1028Germane, 0-500/2000 PPB (1000 PPB Standard)00-1045Hydrogen bromide, 10/200 PPM (20 PPM Standard)00-1017Hydrogen cyanide, 0-10/200 PPM (20 PPM Standard)00-1018Hydrogen cyanide, 0-10/200 PPM (20 PPM Standard)00-1019Hydrogen peroxide, 0-10/200 PPM (20 PPM Standard)00-1019Hydrogen peroxide, 0-10/200 PPM (20 PPM Standard)00-1030Hydrogen peroxide, 0-10/200 PPM (500 PPM Standard)00-1030Hydrogen selenide, 0-500/2000 PPM (500 PPM Standard)00-1030Hydrogen sulfide, 0-10/200 PPM (500 PPM Standard)00-1031Hydrogen sulfide, 200/1000 PPM (500 PPM Standard)00-1034Hydrogen, 0-50/2000 PPM (2000 PPM Standard)00-1035Iodine, 0-50/200 PPM (20 PPM Standard)00-1036Iodine, 0-50/2000 PPM (200 PPM Standard)00-1037Iodine, 0-5/200 PPM (20 PPM Standard)00-1038Iodine, 0-50/200 PPM (200 PPM Standard)00-1034Hydrogen, 0-5/25% (25% Standard)00-1041Mydrogen, 0-5/25% (25% Standard)00-1042Nitric oxide, 0-50/500 PPM (20 PPM Standard)00-1034                                                                               |          |                                               |
| 00-1450         Dimethylamine (DMA), 100/200 PPM (100 PPM Standard)           00-1039         Ethylene oxide, 0-20/200 PPM (20 PPM Standard)           00-1006         Fluorine, 0-1/5 PPM (2 PPM Standard)           00-1007         Fluorine, 0-5/200 (20 PPM Standard)           00-1040         Formaldehyde, 0-20/200 PPM (20 PPM Standard)           00-1349         Formaldehyde, 500/2000 PPM (100 PPM Standard)           00-1028         Germane, 0-10/200 PPM (10 PPM Standard)           00-1028         Germane, 0-500/2000 PPB (1000 PPB Standard)           00-1045         Hydrogen bromide, 10/200 PPM (20 PPM Standard)           00-1048         Hydrogen cyanide, 0-10/200 PPM (20 PPM Standard)           00-1017         Hydrogen cyanide, 0-10/200 PPM (20 PPM Standard)           00-1018         Hydrogen peroxide, 0-10/200 PPM (20 PPM Standard)           00-1019         Hydrogen peroxide, 0-10/200 PPM (20 PPM Standard)           00-1024         Hydrogen peroxide, 0-500/2000 PPM (500 PPM Standard)           00-1030         Hydrogen selenide, 0-500/2000 PPM (500 PPM Standard)           00-1031         Hydrogen sulfide, 0-10/200 PPM (500 PPM Standard)           00-1032         Hydrogen, 0-50/200 PPM (200 PPM Standard)           00-1034         Hydrogen, 0-50/200 PPM (200 PPM Standard)           00-1037         Iodine, 0-5/250 (25% Standard)           0                                        |          |                                               |
| 00-1039         Ethylene oxide, 0-20/200 PPM (20 PPM Standard)           00-1006         Fluorine, 0-1/5 PPM (2 PPM Standard)           00-1007         Fluorine, 0-5/200 (20 PPM Standard)           00-1040         Formaldehyde, 0-20/200 PPM (20 PPM Standard)           00-1040         Formaldehyde, 500/2000 PPM (1000 PPM Standard)           00-1349         Formaldehyde, 500/2000 PPM (100 PPM Standard)           00-1028         Germane, 0-10/200 PPM (10 PPM Standard)           00-1028         Germane, 0-10/200 PPM (20 PPM Standard)           00-117         Hydrogen bromide, 0-10/200 PPM (20 PPM Standard)           00-1017         Hydrogen chloride, 0-10/200 PPM (20 PPM Standard)           00-1018         Hydrogen peroxide, 0-10/200 PPM (20 PPM Standard)           00-1019         Hydrogen peroxide, 200/2000 PPM (20 PPM Standard)           00-1020         Hydrogen peroxide, 0-10/200 PPM (500 PPM Standard)           00-1031         Hydrogen selenide, 0-500/2000 PPM (500 PPM Standard)           00-1030         Hydrogen sulfide, 200/1000 PPM (500 PPM Standard)           00-1041         Hydrogen, 0-500/2000 PPM (2000 PPM Standard)           00-1034         Hydrogen, 0-500/2000 PPM (2000 PPM Standard)           00-1035         Iodine, 0-1/5 PPM (2 PPM Standard)           00-1036         Iodine, 0-5/200 PPM (20 PPM Standard)           00-1037 <td></td> <td></td>                        |          |                                               |
| 00-1006         Fluorine, 0-1/5 PPM (2 PPM Standard)           00-1007         Fluorine, 0-5/200 (20 PPM Standard)           00-1040         Formaldehyde, 0-20/200 PPM (20 PPM Standard)           00-1349         Formaldehyde, 500/2000 PPM (100 PPM Standard)           00-1029         Germane, 0-10/200 PPM (10 PPM Standard)           00-1028         Germane, 0-500/2000 PPB (1000 PPB Standard)           00-1128         Germane, 0-500/2000 PPM (20 PPM Standard)           00-1017         Hydrogen bromide, 0-10/200 PPM (20 PPM Standard)           00-1018         Hydrogen cyanide, 0-10/200 PPM (20 PPM Standard)           00-1019         Hydrogen peroxide, 0-10/200 PPM (20 PPM Standard)           00-1019         Hydrogen peroxide, 0-10/200 PPM (20 PPM Standard)           00-1020         Hydrogen peroxide, 200/2000 PPM (10 PPM Standard)           00-1031         Hydrogen selenide, 0-10/200 PPM (10 PPM Standard)           00-1030         Hydrogen sulfide, 0-10/200 PPM (10 PPM Standard)           00-1031         Hydrogen sulfide, 200/1000 PPM (500 PPM Standard)           00-1041         Hydrogen, 0-50/2000 PPM (2000 PPM Standard)           00-1036         Iodine, 0-1/5 PPM (2 PPM Standard)           00-1037         Iodine, 0-1/200 PPM (20 PPM Standard)           00-1038         Iodine, 0-5/2500 PPM (20 PPM Standard)           00-1039                                                      |          |                                               |
| 00-1007         Fluorine, 0-5/200 (20 PPM Standard)           00-1040         Formaldehyde, 0-20/200 PPM (20 PPM Standard)           00-1349         Formaldehyde, 500/2000 PPM (1000 PPM Standard)           00-1029         Germane, 0-10/200 PPM (10 PPM Standard)           00-1028         Germane, 0-500/2000 PPB (1000 PPB Standard)           00-1028         Germane, 0-500/2000 PPB (1000 PPB Standard)           00-1045         Hydrogen bromide, 10/200 PPM (20 PPM Standard)           00-1017         Hydrogen chloride, 0-10/200 PPM (20 PPM Standard)           00-1018         Hydrogen cyanide, 0-10/200 PPM (20 PPM Standard)           00-1019         Hydrogen peroxide, 0-10/200 PPM (20 PPM Standard)           00-1014         Hydrogen peroxide, 0-10/200 PPM (20 PPM Standard)           00-1042         Hydrogen peroxide, 0-10/200 PPM (500 PPM Standard)           00-1031         Hydrogen selenide, 0-500/2000 PPM (500 PPM Standard)           00-1030         Hydrogen sulfide, 200/1000 PPM (500 PPM Standard)           00-1043         Hydrogen sulfide, 200/1000 PPM (500 PPM Standard)           00-1044         Hydrogen sulfide, 200/1000 PPM (500 PPM Standard)           00-1045         Hydrogen sulfide, 200/1000 PPM (500 PPM Standard)           00-1046         Hydrogen sulfide, 200/1000 PPM (200 PPM Standard)           00-1031         Hydrogen sulfide, 0-10/200 PPM (200 PPM Stan              |          |                                               |
| 00-1040         Formaldehyde, 0-20/200 PPM (20 PPM Standard)           00-1349         Formaldehyde, 500/2000 PPM (1000 PPM Standard)           00-1029         Germane, 0-10/200 PPM (10 PPM Standard)           00-1028         Germane, 0-500/2000 PPB (1000 PPB Standard)           00-1455         Hydrogen bromide, 10/200 PPM (20 PPM Standard)           00-1017         Hydrogen chloride, 0-10/200 PPM (20 PPM Standard)           00-1018         Hydrogen cyanide, 0-10/200 PPM (20 PPM Standard)           00-1019         Hydrogen geroxide, 0-10/200 PPM (20 PPM Standard)           00-1014         Hydrogen peroxide, 0-10/200 PPM (20 PPM Standard)           00-1015         Hydrogen selenide, 0-10/200 PPM (20 PPM Standard)           00-1042         Hydrogen peroxide, 200/2000 PPM (10 PPM Standard)           00-1041         Hydrogen selenide, 0-500/2000 PPM (100 PPM Standard)           00-1030         Hydrogen sulfide, 200/1000 PPM (500 PPM Standard)           00-1043         Hydrogen sulfide, 200/1000 PPM (500 PPM Standard)           00-1044         Hydrogen, 0-5/0200 PPM (200 PPM Standard)           00-1031         Hydrogen, 0-5/0200 PPM (200 PPM Standard)           00-1034         Idydrogen, 0-5/250 (25% Standard)           00-1035         Iodixie, 0-5/200 PPM (200 PPM Standard)           00-1041         Nitric oxide, 0-50/500 PPM (200 PPM Standard) <t< td=""><td></td><td></td></t<>  |          |                                               |
| 00-1349         Formaldehyde, 500/2000 PPM (1000 PPM Standard)           00-1029         Germane, 0-10/200 PPM (10 PPM Standard)           00-1028         Germane, 0-500/2000 PPB (1000 PPB Standard)           00-1455         Hydrogen bromide, 10/200 PPM (20 PPM Standard)           00-1017         Hydrogen chloride, 0-10/200 PPM (20 PPM Standard)           00-1018         Hydrogen cyanide, 0-10/200 PPM (20 PPM Standard)           00-1019         Hydrogen peroxide, 0-10/200 PPM (20 PPM Standard)           00-1042         Hydrogen peroxide, 0-10/200 PPM (20 PPM Standard)           00-1041         Hydrogen peroxide, 0-10/200 PPM (20 PPM Standard)           00-1030         Hydrogen selenide, 0-10/200 PPM (10 PPM Standard)           00-1031         Hydrogen selenide, 0-10/200 PPM (10 PPM Standard)           00-1030         Hydrogen selenide, 0-10/200 PPM (500 PPM Standard)           00-1041         Hydrogen sulfide, 200/1000 PPM (500 PPM Standard)           00-1031         Hydrogen solulide, 200/1000 PPM (500 PPM Standard)           00-1041         Hydrogen (0-50/2000 PPM (200 PPM Standard)           00-1031         Hydrogen doxide, 0-50/2000 PPM (200 PPM Standard)           00-1031         Iddine, 0-5/200 PPM (200 PPM Standard)           00-1031         Iddine, 0-5/200 PPM (20 PPM Standard)           00-1032         Nitric oxide, 0-50/500 PPM (20 PPM Standard)                     |          |                                               |
| 00-1029         Germane, 0-10/200 PPM (10 PPM Standard)           00-1028         Germane, 0-500/2000 PPB (1000 PPB Standard)           00-1455         Hydrogen bromide, 10/200 PPM (20 PPM Standard)           00-1017         Hydrogen chloride, 0-10/200 PPM (20 PPM Standard)           00-1018         Hydrogen cyanide, 0-10/200 PPM (20 PPM Standard)           00-1019         Hydrogen peroxide, 0-10/200 PPM (20 PPM Standard)           00-1019         Hydrogen peroxide, 0-10/200 PPM (20 PPM Standard)           00-1041         Hydrogen peroxide, 200/2000 PPM (500 PPM Standard)           00-1031         Hydrogen selenide, 0-10/200 PPM (500 PPM Standard)           00-1030         Hydrogen selenide, 0-10/200 PPM (500 PPM Standard)           00-1030         Hydrogen selenide, 0-10/200 PPM (500 PPM Standard)           00-1030         Hydrogen sulfide, 200/1000 PPM (500 PPM Standard)           00-1049         Hydrogen, 0-1/10% (4% Standard)           00-1031         Hydrogen, 0-50/2000 PPM (200 PPM Standard)           00-1041         Hydrogen dioxide, 0-10/200 PPM (200 PPM Standard)           00-1031         Ivdrogen dioxide, 0-10/200 PPM (20 PPM Standard)           00-1032         Nitric oxide, 0-50/500 PPM (20 PPM Standard)           00-1031         Ivdrogen dioxide, 0-10/200 PPM (20 PPM Standard)           00-1032         Nitric oxide, 0-5/25% (25% Standard) </td <td></td> <td></td> |          |                                               |
| 00-1028Germane, 0-500/2000 PPB (1000 PPB Standard)00-1455Hydrogen bromide, 10/200 PPM (20 PPM Standard)00-1017Hydrogen chloride, 0-10/200 PPM (20 PPM Standard)00-1018Hydrogen cyanide, 0-10/200 PPM (20 PPM Standard)00-1019Hydrogen fluoride, 0-10/200 PPM (20 PPM Standard)00-1014Hydrogen peroxide, 0-10/200 PPM (20 PPM Standard)00-1042Hydrogen peroxide, 200/2000 PPM (20 PPM Standard)00-1043Hydrogen peroxide, 200/2000 PPM (500 PPM Standard)00-1044Hydrogen selenide, 0-10/200 PPM (10 PPM Standard)00-1030Hydrogen selenide, 0-500/2000 PPB (1000 PPB Standard)00-1030Hydrogen sulfide, 200/1000 PPM (500 PPM Standard)00-1041Hydrogen, 0-1/10% (4% Standard)00-1043Hydrogen, 0-500/2000 PPM (2000 PPM Standard)00-1044Hydrogen, 0-500/2000 PPM (2000 PPM Standard)00-1031Iodine, 0-1/5 PPM (2 PPM Standard)00-1032Nitric oxide, 0-50/500 PPM (200 PPM Standard)00-1033Iodine, 0-5/200 PPM (200 PPM Standard)00-1044Nox, 50/500 PPM (200 PPM Standard)00-1052Nitrogen dioxide, 0-10/200 PPM (20 PPM Standard)00-1014Oxygen, 0-5/25% (25% Standard)00-1014Oxygen, 0-5/200 PPM (20 PPM Standard)00-1035Ozone, 0-1/5 PPM (2 PPM Standard)00-1040Ozone, 0-1/5 PPM (2 PPM Standard)00-1055Phosgene, 0-1/5 PPM (2 PPM Standard)00-1050Phosgene, 0-5/100 PPM (100 PPM Standard)00-1051Phosgene, 0-5/100 PPM (100 PPM Standard)00-1052Phosphine, 0-200/2000 PPM (10                                                                               |          |                                               |
| 00-1455Hydrogen bromide, 10/200 PPM (20 PPM Standard)00-1017Hydrogen chloride, 0-10/200 PPM (20 PPM Standard)00-1018Hydrogen cyanide, 0-10/200 PPM (20 PPM Standard)00-1019Hydrogen fluoride, 0-10/200 PPM (20 PPM Standard)00-1042Hydrogen peroxide, 0-10/100 PPM (20 PPM Standard)00-1041Hydrogen peroxide, 200/2000 PPM (500 PPM Standard)00-1031Hydrogen selenide, 0-10/200 PPM (500 PPM Standard)00-1030Hydrogen selenide, 0-500/2000 PPB (1000 PPB Standard)00-1030Hydrogen selenide, 0-10/200 PPM (50 PPM Standard)00-1030Hydrogen sulfide, 200/1000 PPM (500 PPM Standard)00-1041Hydrogen, 0-1/10% (4% Standard)00-1031Hydrogen, 0-110% (4% Standard)00-1034Hydrogen, 0-50/2000 PPM (2000 PPM Standard)00-1035Iodine, 0-1/5 PPM (2 PPM Standard)00-1036Iodine, 0-5/200 PPM (20 PPM Standard)00-1037Iodine, 0-50/500 PPM (20 PPM Standard)00-1038Ozone, 0-5/25% (25% Standard)00-1044Oxygen, 0-5/25% (25% Standard)00-1050Ozone, 0-5/200 PPM (20 PPM Standard)00-1071Ditric oxide, 0-50/500 PPM (20 PPM Standard)00-108Ozone, 0-1/5 PPM (2 PPM Standard)00-109Ozone, 0-5/200 PPM (20 PPM Standard)00-1016Phosgene, 0-1/5 PPM (2 PPM Standard)00-1037Phosphine, 0-10/200 PPM (100 PPM Standard)00-1038Ozone, 0-5/100 PPM (100 PPM Standard)00-1033Phosphine, 0-10/200 PPM (100 PPM Standard)00-1034Phosphine, 0-200/2000 PPM (1000 PPM Standard) <td< td=""><td></td><td></td></td<>                                                            |          |                                               |
| 00-1017Hydrogen chloride, 0-10/200 PPM (20 PPM Standard)00-1018Hydrogen cyanide, 0-10/200 PPM (20 PPM Standard)00-1019Hydrogen fluoride, 0-10/200 PPM (20 PPM Standard)00-1042Hydrogen peroxide, 0-10/100 PPM (20 PPM Standard)00-1042Hydrogen peroxide, 200/2000 PPM (500 PPM Standard)00-1031Hydrogen selenide, 0-10/200 PPM (10 PPM Standard)00-1030Hydrogen selenide, 0-500/2000 PPB (1000 PPB Standard)00-1030Hydrogen sulfide, 0-10/200 PPM (50 PPM Standard)00-1030Hydrogen sulfide, 200/1000 PPM (500 PPM Standard)00-1041Hydrogen sulfide, 200/1000 PPM (500 PPM Standard)00-1013Hydrogen, 0-1/10% (4% Standard)00-1041Hydrogen, 0-50/2000 PPM (2000 PPM Standard)00-1031Iodine, 0-1/5 PPM (2 PPM Standard)00-1032Iodine, 0-5/200 PPM (20 PPM Standard)00-1031Nitric oxide, 0-50/500 PPM (200 PPM Standard)00-1022Nitrogen dioxide, 0-10/200 PPM (20 PPM Standard)00-1031NOx, 50/500 PPM (200 PPM Standard)00-1041Oxygen, 0-5/25% (25% Standard)00-1041Oxygen, 0-5/25% (25% Standard)00-1042Ozone, 0-1/5 PPM (2 PPM Standard)00-1053Ozone, 0-5/200 PPM (20 PPM Standard)00-1064Ozygen, 0-5/200 PPM (20 PPM Standard)00-1075Phosgene, 0-1/5 PPM (2 PPM Standard)00-108Ozone, 0-5/200 PPM (1000 PPM Standard)00-105Phosgene, 0-5/100 PPM (100 PPM Standard)00-105Phosgene, 0-5/100 PPM (100 PPM Standard)00-1034Phosphine, 0-200/2000 PPM (1000 PPM Standard) <td></td> <td></td>                                                              |          |                                               |
| 00-1018         Hydrogen cyanide, 0-10/200 PPM (20 PPM Standard)           00-1019         Hydrogen fluoride, 0-10/200 PPM (20 PPM Standard)           00-1042         Hydrogen peroxide, 0-10/100 PPM (20 PPM Standard)           00-1042         Hydrogen peroxide, 200/2000 PPM (500 PPM Standard)           00-1031         Hydrogen selenide, 0-10/200 PPM (10 PPM Standard)           00-1030         Hydrogen selenide, 0-500/2000 PPB (1000 PPB Standard)           00-1030         Hydrogen sulfide, 200/1000 PPM (50 PPM Standard)           00-1042         Hydrogen sulfide, 200/1000 PPM (500 PPM Standard)           00-1030         Hydrogen, 0-1/10% (4% Standard)           00-1041         Hydrogen, 0-500/2000 PPM (2000 PPM Standard)           00-1036         Iodine, 0-1/5 PPM (2 PPM Standard)           00-1037         Iodine, 0-5/200 PPM (20 PPM Standard)           00-1021         Nitric oxide, 0-50/500 PPM (200 PPM Standard)           00-1037         Iodine, 0-5/200 PPM (200 PPM Standard)           00-1041         NOx, 50/500 PPM (200 PPM Standard)           00-1022         Nitrogen dioxide, 0-10/200 PPM (20 PPM Standard)           00-1038         Ozone, 0-1/5 PPM (2 PPM Standard)           00-1040         Oxygen, 0-5/25% (25% Standard)           00-1050         Ozone, 0-5/200 PPM (20 PPM Standard)           00-1050         Ozone, 0-5/200                                                  |          |                                               |
| 00-1019         Hydrogen fluoride, 0-10/200 PPM (20 PPM Standard)           00-1042         Hydrogen peroxide, 0-10/100 PPM (20 PPM Standard)           00-1169         Hydrogen peroxide, 200/2000 PPM (500 PPM Standard)           00-1031         Hydrogen selenide, 0-10/200 PPM (10 PPM Standard)           00-1030         Hydrogen selenide, 0-500/2000 PPB (1000 PPB Standard)           00-1030         Hydrogen selenide, 0-500/2000 PPM (50 PPM Standard)           00-1020         Hydrogen sulfide, 200/1000 PPM (500 PPM Standard)           00-1041         Hydrogen, 0-1/10% (4% Standard)           00-1036         Iodine, 0-1/5 PPM (2 PPM Standard)           00-1037         Iodine, 0-5/200 PPM (200 PPM Standard)           00-1021         Nitric oxide, 0-50/500 PPM (200 PPM Standard)           00-1022         Nitrogen dioxide, 0-10/200 PPM (20 PPM Standard)           00-1021         Nitrogen dioxide, 0-10/200 PPM (20 PPM Standard)           00-1022         Nitrogen dioxide, 0-10/200 PPM (20 PPM Standard)           00-1038         Ozone, 0-5/25% (25% Standard)           00-1040         Oxygen, 0-5/25% (25% Standard)           00-1039         Ozone, 0-1/5 PPM (2 PPM Standard)           00-1040         Ozone, 0-5/200 PPM (100 PPM Standard)           00-105         Phosgene, 0-5/100 PPM (100 PPM Standard)           00-1016         Phosphine,                                                 |          |                                               |
| 00-1042         Hydrogen peroxide, 0-10/100 PPM (20 PPM Standard)           00-1169         Hydrogen peroxide, 200/2000 PPM (500 PPM Standard)           00-1031         Hydrogen selenide, 0-10/200 PPM (10 PPM Standard)           00-1030         Hydrogen selenide, 0-500/2000 PPB (1000 PPB Standard)           00-1020         Hydrogen selenide, 0-10/200 PPM (50 PPM Standard)           00-1020         Hydrogen sulfide, 200/1000 PPM (500 PPM Standard)           00-1469         Hydrogen, 0-1/10% (4% Standard)           00-1013         Hydrogen, 0-500/2000 PPM (2000 PPM Standard)           00-1021         Hydrogen, 0-500/2000 PPM (2000 PPM Standard)           00-1036         Iodine, 0-1/5 PPM (2 PPM Standard)           00-1037         Iodine, 0-5/200 PPM (20 PPM Standard)           00-1021         Nitric oxide, 0-50/500 PPM (200 PPM Standard)           00-1022         Nitrogen dioxide, 0-10/200 PPM Standard)           00-1032         Nitrogen dioxide, 0-10/200 PPM Standard)           00-1041         Oxygen, 0-5/25% (25% Standard)           00-1041         Oxygen, 0-5/25% (25% Standard)           00-1038         Ozone, 0-5/200 PPM (20 PPM Standard)           00-1040         Oxygen, 0-5/200 PPM (20 PPM Standard)           00-105         Phosgene, 0-1/5 PPM (2 PPM Standard)           00-1016         Phosgene, 0-5/100 PPM (100 PPM Standar                                                 |          |                                               |
| 00-1169         Hydrogen peroxide, 200/2000 PPM (500 PPM Standard)           00-1031         Hydrogen selenide, 0-10/200 PPM (10 PPM Standard)           00-1030         Hydrogen selenide, 0-500/2000 PPB (1000 PPB Standard)           00-1020         Hydrogen sulfide, 0-10/200 PPM (50 PPM Standard)           00-1020         Hydrogen sulfide, 200/1000 PPM (500 PPM Standard)           00-1469         Hydrogen, 0-1/10% (4% Standard)           00-1013         Hydrogen, 0-500/2000 PPM (2000 PPM Standard)           00-1041         Hydrogen, 0-500/2000 PPM (2000 PPM Standard)           00-1036         Iodine, 0-1/5 PPM (2 PPM Standard)           00-1037         Iodine, 0-5/200 PPM (20 PPM Standard)           00-1021         Nitric oxide, 0-50/500 PPM (200 PPM Standard)           00-1022         Nitrogen dioxide, 0-10/200 PPM Standard)           00-1032         Nitrogen dioxide, 0-10/200 PPM Standard)           00-1041         Oxygen, 0-5/25% (25% Standard)           00-1041         Oxygen, 0-5/25% (25% Standard)           00-1043         Ozone, 0-5/200 PPM (20 PPM Standard)           00-1040         Ozygen, 0-5/200 PPM (20 PPM Standard)           00-1050         Ozone, 0-5/200 PPM (20 PPM Standard)           00-1051         Phosgene, 0-1/5 PPM (2 PPM Standard)           00-1015         Phosgene, 0-5/100 PPM (100 PPM Standard)     <                                                      |          |                                               |
| 00-1031         Hydrogen selenide, 0-10/200 PPM (10 PPM Standard)           00-1030         Hydrogen selenide, 0-500/2000 PPB (1000 PPB Standard)           00-1020         Hydrogen sulfide, 0-10/200 PPM (50 PPM Standard)           00-1469         Hydrogen sulfide, 200/1000 PPM (500 PPM Standard)           00-1013         Hydrogen, 0-1/10% (4% Standard)           00-1041         Hydrogen, 0-500/2000 PPM (2000 PPM Standard)           00-1036         Iodine, 0-1/5 PPM (2 PPM Standard)           00-1037         Iodine, 0-5/200 PPM (20 PPM Standard)           00-1021         Nitric oxide, 0-50/500 PPM (200 PPM Standard)           00-1022         Nitrogen dioxide, 0-10/200 PPM (20 PPM Standard)           00-1022         Nitrogen dioxide, 0-10/200 PPM (20 PPM Standard)           00-1013         NOx, 50/500 PPM (200 PPM Standard)           00-1014         Oxygen, 0-5/25% (25% Standard)           00-1014         Oxygen, 0-5/25% (25% Standard)           00-1018         Ozone, 0-1/5 PPM (2 PPM Standard)           00-1035         Ozone, 200/1000 PPM (100 PPM Standard)           00-1015         Phosgene, 0-5/100 PPM (10 PPM Standard)           00-1033         Phosphine, 0-10/200 PPM (100 PPM Standard)           00-1034         Phosphine, 0-200/2000 PPM (1000 PPM Standard)           00-1034         Phosphine, 0-500/2000 PPM (1000 PPM Standar                                                 |          |                                               |
| 00-1030         Hydrogen selenide, 0-500/2000 PPB (1000 PPB Standard)           00-1020         Hydrogen sulfide, 0-10/200 PPM (50 PPM Standard)           00-1469         Hydrogen sulfide, 200/1000 PPM (500 PPM Standard)           00-1013         Hydrogen, 0-1/10% (4% Standard)           00-1014         Hydrogen, 0-500/2000 PPM (2000 PPM Standard)           00-1036         Iodine, 0-1/5 PPM (2 PPM Standard)           00-1037         Iodine, 0-5/200 PPM (20 PPM Standard)           00-1021         Nitric oxide, 0-50/500 PPM (200 PPM Standard)           00-1022         Nitrogen dioxide, 0-10/200 PPM (20 PPM Standard)           00-1021         Nitrogen dioxide, 0-10/200 PPM (20 PPM Standard)           00-1022         Nitrogen dioxide, 0-10/200 PPM (20 PPM Standard)           00-1014         Oxygen, 0-5/25% (25% Standard)           00-1014         Oxygen, 0-5/25% (25% Standard)           00-1008         Ozone, 0-1/5 PPM (2 PPM Standard)           00-1018         Ozone, 0-5/200 PPM (20 PPM Standard)           00-1015         Phosgene, 0-1/5 PPM (2 PPM Standard)           00-1015         Phosgene, 0-1/5 PPM (2 PPM Standard)           00-1016         Phosgene, 0-5/100 PPM (100 PPM Standard)           00-1033         Phosphine, 0-10/200 PPM (100 PPM Standard)           00-1034         Phosphine, 0-200/2000 PPM (1000 PPM Standard)                                                        |          |                                               |
| 00-1020         Hydrogen sulfide, 0-10/200 PPM (50 PPM Standard)           00-1469         Hydrogen sulfide, 200/1000 PPM (500 PPM Standard)           00-1013         Hydrogen, 0-1/10% (4% Standard)           00-1041         Hydrogen, 0-500/2000 PPM (2000 PPM Standard)           00-1036         Iodine, 0-1/5 PPM (2 PPM Standard)           00-1037         Iodine, 0-5/200 PPM (20 PPM Standard)           00-1021         Nitric oxide, 0-50/500 PPM (200 PPM Standard)           00-1022         Nitrogen dioxide, 0-10/200 PPM (20 PPM Standard)           00-1022         Nitrogen dioxide, 0-10/200 PPM (20 PPM Standard)           00-1014         Oxygen, 0-5/25% (25% Standard)           00-1014         Oxygen, 0-5/25% (25% Standard)           00-1008         Ozone, 0-1/5 PPM (2 PPM Standard)           00-1035         Ozone, 0-5/200 PPM (20 PPM Standard)           00-1040         Oxygen, 0-5/25% (25% Standard)           00-105         Phosgene, 0-1/5 PPM (2 PPM Standard)           00-107         Ozone, 0-5/200 PPM (100 PPM Standard)           00-1015         Phosgene, 0-5/100 PPM (100 PPM Standard)           00-1016         Phosphine, 0-10/200 PPM (10 PPM Standard)           00-1033         Phosphine, 0-200/2000 PPM (1000 PPM Standard)           00-1034         Phosphine, 0-200/2000 PPM (1000 PPM Standard) <t< td=""><td></td><td></td></t<>                                                  |          |                                               |
| 00-1469         Hydrogen sulfide, 200/1000 PPM (500 PPM Standard)           00-1013         Hydrogen, 0-1/10% (4% Standard)           00-1041         Hydrogen, 0-500/2000 PPM (2000 PPM Standard)           00-1036         Iodine, 0-1/5 PPM (2 PPM Standard)           00-1037         Iodine, 0-5/200 PPM (20 PPM Standard)           00-1021         Nitric oxide, 0-50/500 PPM (200 PPM Standard)           00-1022         Nitrogen dioxide, 0-10/200 PPM (20 PPM Standard)           00-1022         Nitrogen dioxide, 0-10/200 PPM (20 PPM Standard)           00-1014         Oxygen, 0-5/25% (25% Standard)           00-1014         Oxygen, 0-5/25% (25% Standard)           00-1008         Ozone, 0-1/5 PPM (2 PPM Standard)           00-1035         Ozone, 0-5/200 PPM (20 PPM Standard)           00-1036         Ozone, 0-5/200 PPM (20 PPM Standard)           00-1040         Oxygen, 0-5/25% (25% Standard)           00-1050         Ozone, 0-1/5 PPM (2 PPM Standard)           00-1051         Phosgene, 0-1/5 PPM (2 PPM Standard)           00-1015         Phosgene, 0-5/100 PPM (100 PPM Standard)           00-1033         Phosphine, 0-10/200 PPM (10 PPM Standard)           00-1034         Phosphine, 0-200/2000 PPM (1000 PPM Standard)           00-1032         Phosphine, 0-500/2000 PPM (1000 PPM Standard)                                                                                                  |          |                                               |
| 00-1013         Hydrogen, 0-1/10% (4% Standard)           00-1041         Hydrogen, 0-500/2000 PPM (2000 PPM Standard)           00-1036         Iodine, 0-1/5 PPM (2 PPM Standard)           00-1037         Iodine, 0-5/200 PPM (20 PPM Standard)           00-1021         Nitric oxide, 0-50/500 PPM (200 PPM Standard)           00-1022         Nitrogen dioxide, 0-10/200 PPM (20 PPM Standard)           00-1022         Nitrogen dioxide, 0-10/200 PPM (20 PPM Standard)           00-1014         NOx, 50/500 PPM (200 PPM Standard)           00-1014         Oxygen, 0-5/25% (25% Standard)           00-1008         Ozone, 0-1/5 PPM (2 PPM Standard)           00-1009         Ozone, 0-5/200 PPM (20 PPM Standard)           00-1358         Ozone, 0-5/200 PPM (20 PPM Standard)           00-1015         Phosgene, 0-1/5 PPM (2 PPM Standard)           00-1015         Phosgene, 0-1/5 PPM (2 PPM Standard)           00-1016         Phosgene, 0-5/100 PPM (100 PPM Standard)           00-1033         Phosphine, 0-10/200 PPM (10 PPM Standard)           00-1034         Phosphine, 0-200/2000 PPM (1000 PPM Standard)           00-1032         Phosphine, 0-500/2000 PPB (1000 PPB Standard)                                                                                                                                                                                                                                |          |                                               |
| 00-1041         Hydrogen, 0-500/2000 PPM (2000 PPM Standard)           00-1036         Iodine, 0-1/5 PPM (2 PPM Standard)           00-1037         Iodine, 0-5/200 PPM (20 PPM Standard)           00-1021         Nitric oxide, 0-50/500 PPM (200 PPM Standard)           00-1022         Nitrogen dioxide, 0-10/200 PPM (20 PPM Standard)           00-1022         Nitrogen dioxide, 0-10/200 PPM (20 PPM Standard)           00-1014         NOx, 50/500 PPM (200 PPM Standard)           00-1014         Oxygen, 0-5/25% (25% Standard)           00-1008         Ozone, 0-1/5 PPM (2 PPM Standard)           00-1009         Ozone, 0-5/200 PPM (20 PPM Standard)           00-1358         Ozone, 0-5/200 PPM (20 PPM Standard)           00-1015         Phosgene, 0-1/5 PPM (2 PPM Standard)           00-1015         Phosgene, 0-5/100 PPM (1000 PPM Standard)           00-1016         Phosgene, 0-5/100 PPM (100 PPM Standard)           00-1033         Phosphine, 0-10/200 PPM (100 PPM Standard)           00-1034         Phosphine, 0-200/2000 PPM (1000 PPM Standard)           00-1032         Phosphine, 0-500/2000 PPM (1000 PPM Standard)                                                                                                                                                                                                                                                                                    | 00-1013  |                                               |
| 00-1037         Iodine, 0-5/200 PPM (20 PPM Standard)           00-1021         Nitric oxide, 0-50/500 PPM (200 PPM Standard)           00-1022         Nitrogen dioxide, 0-10/200 PPM (20 PPM Standard)           00-1181         NOx, 50/500 PPM (200 PPM Standard)           00-1014         Oxygen, 0-5/25% (25% Standard)           00-1008         Ozone, 0-1/5 PPM (2 PPM Standard)           00-1009         Ozone, 0-5/200 PPM (20 PPM Standard)           00-1358         Ozone, 200/1000 PPM (20 PPM Standard)           00-1015         Phosgene, 0-1/5 PPM (2 PPM Standard)           00-1016         Phosgene, 0-1/5 PPM (2 PPM Standard)           00-1013         Phosgene, 0-1/5 PPM (1000 PPM Standard)           00-1014         Phosphine, 0-10/200 PPM (100 PPM Standard)           00-1033         Phosphine, 0-10/200 PPM (100 PPM Standard)           00-1034         Phosphine, 0-200/2000 PPM (1000 PPM Standard)           00-1032         Phosphine, 0-500/2000 PPB (1000 PPB Standard)                                                                                                                                                                                                                                                                                                                                                                                                                                   | 00-1041  |                                               |
| 00-1021         Nitric oxide, 0-50/500 PPM (200 PPM Standard)           00-1022         Nitrogen dioxide, 0-10/200 PPM (20 PPM Standard)           00-1121         NOx, 50/500 PPM (200 PPM Standard)           00-1014         Oxygen, 0-5/25% (25% Standard)           00-1008         Ozone, 0-1/5 PPM (2 PPM Standard)           00-1009         Ozone, 0-5/200 PPM (20 PPM Standard)           00-1358         Ozone, 200/1000 PPM (1000 PPM Standard)           00-1015         Phosgene, 0-1/5 PPM (2 PPM Standard)           00-1016         Phosgene, 0-5/100 PPM (100 PPM Standard)           00-1033         Phosphine, 0-10/200 PPM (10 PPM Standard)           00-1034         Phosphine, 0-200/2000 PPM (1000 PPM Standard)           00-1032         Phosphine, 0-500/2000 PPB (1000 PPB Standard)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 00-1036  | Iodine, 0-1/5 PPM (2 PPM Standard)            |
| 00-1022         Nitrogen dioxide, 0-10/200 PPM (20 PPM Standard)           00-1181         NOx, 50/500 PPM (200 PPM Standard)           00-1014         Oxygen, 0-5/25% (25% Standard)           00-1008         Ozone, 0-1/5 PPM (2 PPM Standard)           00-1009         Ozone, 0-5/200 PPM (20 PPM Standard)           00-1358         Ozone, 200/1000 PPM (1000 PPM Standard)           00-1015         Phosgene, 0-1/5 PPM (2 PPM Standard)           00-1016         Phosgene, 0-5/100 PPM (100 PPM Standard)           00-1033         Phosphine, 0-10/200 PPM (10 PPM Standard)           00-1034         Phosphine, 0-200/2000 PPM (1000 PPM Standard)           00-1032         Phosphine, 0-500/2000 PPB (1000 PPB Standard)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 00-1037  | Iodine, 0-5/200 PPM (20 PPM Standard)         |
| 00-1181         NOx, 50/500 PPM (200 PPM Standard)           00-1014         Oxygen, 0-5/25% (25% Standard)           00-1008         Ozone, 0-1/5 PPM (2 PPM Standard)           00-1009         Ozone, 0-5/200 PPM (20 PPM Standard)           00-1358         Ozone, 200/1000 PPM (1000 PPM Standard)           00-1015         Phosgene, 0-1/5 PPM (2 PPM Standard)           00-1016         Phosgene, 0-5/100 PPM (100 PPM Standard)           00-1033         Phosphine, 0-10/200 PPM (10 PPM Standard)           00-1034         Phosphine, 0-200/2000 PPM (1000 PPM Standard)           00-1032         Phosphine, 0-500/2000 PPB (1000 PPB Standard)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 00-1021  | Nitric oxide, 0-50/500 PPM (200 PPM Standard) |
| 00-1014         Oxygen, 0-5/25% (25% Standard)           00-1008         Ozone, 0-1/5 PPM (2 PPM Standard)           00-1009         Ozone, 0-5/200 PPM (20 PPM Standard)           00-1358         Ozone, 200/1000 PPM (1000 PPM Standard)           00-1015         Phosgene, 0-1/5 PPM (2 PPM Standard)           00-1016         Phosgene, 0-5/100 PPM (100 PPM Standard)           00-1033         Phosphine, 0-10/200 PPM (10 PPM Standard)           00-1034         Phosphine, 0-200/2000 PPM (1000 PPM Standard)           00-1032         Phosphine, 0-500/2000 PPB (1000 PPB Standard)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 00-1022  |                                               |
| 00-1008         Ozone, 0-1/5 PPM (2 PPM Standard)           00-1009         Ozone, 0-5/200 PPM (20 PPM Standard)           00-1358         Ozone, 200/1000 PPM (1000 PPM Standard)           00-1015         Phosgene, 0-1/5 PPM (2 PPM Standard)           00-1016         Phosgene, 0-5/100 PPM (100 PPM Standard)           00-1033         Phosphine, 0-10/200 PPM (100 PPM Standard)           00-1034         Phosphine, 0-200/2000 PPM (1000 PPM Standard)           00-1032         Phosphine, 0-500/2000 PPB (1000 PPB Standard)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          | NOx, 50/500 PPM (200 PPM Standard)            |
| 00-1009         Ozone, 0-5/200 PPM (20 PPM Standard)           00-1358         Ozone, 200/1000 PPM (1000 PPM Standard)           00-1015         Phosgene, 0-1/5 PPM (2 PPM Standard)           00-1016         Phosgene, 0-5/100 PPM (100 PPM Standard)           00-1033         Phosphine, 0-10/200 PPM (10 PPM Standard)           00-1034         Phosphine, 0-200/2000 PPM (1000 PPM Standard)           00-1032         Phosphine, 0-500/2000 PPB (1000 PPB Standard)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |                                               |
| 00-1358         Ozone, 200/1000 PPM (1000 PPM Standard)           00-1015         Phosgene, 0-1/5 PPM (2 PPM Standard)           00-1016         Phosgene, 0-5/100 PPM (100 PPM Standard)           00-1033         Phosphine, 0-10/200 PPM (10 PPM Standard)           00-1034         Phosphine, 0-200/2000 PPM (1000 PPM Standard)           00-1032         Phosphine, 0-500/2000 PPB (1000 PPB Standard)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 00-1008  |                                               |
| 00-1015         Phosgene, 0-1/5 PPM (2 PPM Standard)           00-1016         Phosgene, 0-5/100 PPM (100 PPM Standard)           00-1033         Phosphine, 0-10/200 PPM (10 PPM Standard)           00-1034         Phosphine, 0-200/2000 PPM (1000 PPM Standard)           00-1032         Phosphine, 0-500/2000 PPB (1000 PPB Standard)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |                                               |
| 00-1016         Phosgene, 0-5/100 PPM (100 PPM Standard)           00-1033         Phosphine, 0-10/200 PPM (10 PPM Standard)           00-1034         Phosphine, 0-200/2000 PPM (1000 PPM Standard)           00-1032         Phosphine, 0-500/2000 PPB (1000 PPB Standard)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |                                               |
| 00-1033         Phosphine, 0-10/200 PPM (10 PPM Standard)           00-1034         Phosphine, 0-200/2000 PPM (1000 PPM Standard)           00-1032         Phosphine, 0-500/2000 PPB (1000 PPB Standard)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |                                               |
| 00-1034         Phosphine, 0-200/2000 PPM (1000 PPM Standard)           00-1032         Phosphine, 0-500/2000 PPB (1000 PPB Standard)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |                                               |
| 00-1032 Phosphine, 0-500/2000 PPB (1000 PPB Standard)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |                                               |
| 00-1035 Silane, 0-10/200 PPM (10 PPM Standard)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          | · · · · · · · · · · · · · · · · · · ·         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 00-1035  | Silane, 0-10/200 PPINI (10 PPIM Standard)     |

Table 23. H10 sensor modules

O&M Manual Revision M (Apr 2010)

| 00-1285 | Silane, 500/2000 PPB (1000 PPB Standard)       |
|---------|------------------------------------------------|
| 00-1023 | Sulfur dioxide, 0-10/500 PPM (20 PPM Standard) |

## Table 24. E18 gas generators

| Tac      |                  |
|----------|------------------|
| Part No. | Description      |
| 00-1239  | Chlorine         |
| 00-1240  | Ammonia          |
| 00-1241  | Carbon Monoxide  |
| 00-1243  | Hydrogen Sulfide |
| 00-1244  | Sulfur Dioxide   |
|          |                  |

| le 25. Duct mount sensor accessories |
|--------------------------------------|
| Description                          |
| H10 Duct Mount Adapter               |
| H10 Duct Mount Sensor Holder         |
| Sensor Gasket for (00-1389)          |
| Duct Mount Cable Assembly            |
|                                      |



# 6 APPENDIX A 6.1 Printing Data Log Reports

## Serial Connection

The data log report may be sent to a printer or a computer over an RS232 connection, or in some cases, an RS485 connection.



#### Figure 94 - RS232 Communications wiring



Figure 95 - RS485 Communication wiring

#### Communication Setup Page

► Protocol =ASCII Interface=RS232 Baud\_Rate=9600 Paranetrs=N, 8, 1

The communication interface, baud rate, parity, number of data bits, and number of stop bits are configured on the Communication Setup page.

## Flow Control

The transmitter uses XON/XOFF flow control while sending a report. That is, once the data stream has begun, it will continue until the XOFF character (19) is received. After sitting idle, the report stream will begin again upon reception of the XON character (17).

An RS232 connection can support full duplex communication and is perfectly suited for XON/XOFF flow control. However, an RS485 connection is only half duplex. It cannot receive while it is transmitting and might miss the XOFF character, resulting in a buffer overflow at the receiving device.

A receiving device will send the XOFF character when its buffer is nearly full. Some older dotmatrix printers will send an XOFF because they have a small receive buffers and cannot process characters while the head is returning to start a new line. On the other hand, most computers have comparatively large buffers and can easily accept the report stream without sending an XOFF. Therefore, an RS485 connection may work for sending reports to a computer.

The transmitter features an additional method to help avoid losing data due to buffer overflow problems on receiving devices that lack XON/XOFF capability (or have the capability but are using an RS485 connection). A programmable time delay of up to 10s may be inserted at the end of each report line. This permits the receiver time to process more characters in its buffer and avoid an overflow. However, this may be a method of trial and error until the proper delay setting is determined so that no characters are missing from the report.

## Report Format

The format of the report is suitable for import into most spreadsheet programs and consists of a date column, a time column, and 1-30 columns for sample values. Each line of the report shows the date and time of the first sample. Samples appearing in subsequent columns (left to right) were recorded at equal sampling intervals.

In the top line of the example below, the first sample (S0) occurred at 22:40. The next sample to the right (S1) occurred at 22:41, followed by the next (S2) at 22:42, and so on. This pattern is repeated throughout the report.

| _ | Date                                                                                                                             | Time                                                                                                                   | <b>S</b> 0                                                                           | <i>S</i> 1                                                                   | <b>S</b> 2                                                           | S3                                                                                           | 1 |
|---|----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------|---|
|   | 07/09/06<br>07/09/06<br>07/09/06<br>07/09/06<br>07/09/06<br>07/09/06<br>07/09/06<br>07/09/06<br>07/09/06<br>07/09/06<br>07/09/06 | $\begin{array}{c} 22:44\\ 22:48\\ 22:52\\ 22:56\\ 23:00\\ 23:04\\ 23:08\\ 23:12\\ 23:16\\ 23:20\\ 23:24\\ \end{array}$ | 0.01<br>-0.0<br>0.01<br>TEST<br>TEST<br>0.07<br>0.06<br>0.05<br>0.06<br>0.01<br>0.00 | 0.00<br>0.00<br>TEST<br>TEST<br>0.06<br>0.05<br>0.05<br>0.05<br>0.01<br>0.00 | 0.00<br>TEST<br>TEST<br>0.07<br>0.06<br>0.04<br>0.05<br>0.01<br>0.00 | 0.01<br>-0.0<br>TEST<br>TEST<br>TEST<br>0.06<br>0.06<br>0.06<br>0.05<br>0.04<br>0.00<br>-0.1 | ┢ |
| ( | 07/09/06<br>07/09/06<br>07/09/06                                                                                                 | 23:32<br>23:36                                                                                                         | <br><br>FFFF                                                                         | <br><br>FFFF                                                                 | <br><br>0.02                                                         | <br><br>0.02                                                                                 |   |
|   |                                                                                                                                  |                                                                                                                        |                                                                                      |                                                                              |                                                                      |                                                                                              |   |

The transmitter permits selection of either a CR (carriage return) or CR/LF (carriage return/line feed) as the EOL (end-of-line) characters. If the lines of the report appear to be printing over each other, choose the CR/LF option. If the lines appear to be double spaced, choose the CR option.

The number of sample columns appearing across the page is programmable from 1 to 30. This is designed so that a report may be directed to either a small carriage printer, or to a wider format device. A wider report will take less time to print because the date and time fields will be printed less frequently.

Samples reported are assumed to be in units of PPM, PPB, %, or %LEL, as determined by the gas concentration units appearing on the main display of the transmitter. Sample values outside of printing limits are forced to the following values.

| Samples           | Are forced to |
|-------------------|---------------|
| Less than –999    | -999          |
| Greater than 9999 | 9999          |

Symbols may appear in place of sample values, and are defined as follows.

| Symbol  | Description                                                                                                                                               |  |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|         | No sample recorded. The transmitter was not on to record the sample, or has not yet recorded the sample.                                                  |  |
| FFFF    | The transmitter was in fault during the sample.                                                                                                           |  |
| TEST    | The transmitter was in auto-test during the sample. This symbol appears only if the Log_Data variable in the Menu/Setup/Auto-T/Setup menu is set to "NO". |  |
| * * * * | Data in the log is corrupted or unreliable.                                                                                                               |  |

## Report Control

The start date and length of the report may be controlled from the operator interface. The length of the report is limited to the number of days actually stored in the log. The report always begins at 00:00 on the start date, and continues forward for the number of days specified. If no data has yet been logged, the report will show four dashes (----) in place of samples.

## 6.2 Example: Charting a Data Log Report

Start HyperTerminal by clicking **Start**, pointing to **Programs**, pointing to **Accessories**, pointing to **Communications**, clicking **HyperTerminal**, and then double-clicking **Hypertrm.exe**.

When the **Connection Description** dialog box appears, type in **Connect to F12**. If you wish, choose an icon by sliding the horizontal scroll bar over and clicking one of the selections. Click **OK** when ready.

| Connection Description                   |            |           |         | ? ×  |
|------------------------------------------|------------|-----------|---------|------|
| New Connection                           |            |           |         |      |
| Enter a name and choose an <u>N</u> ame: | n icon for | the conne | ection: |      |
| Connect to F12                           |            |           |         |      |
| Icon:                                    | _          |           |         |      |
|                                          | MC         | 8         | ß       | 2    |
| 2                                        |            | ОК        | Car     | icel |

When the **Connect To** dialog appears, set **Connect using:** to **Direct to Com1** (or Direct to Com2 if you are using COM2) and click **OK**.

| Connect To          |                                   | <u>?</u> × |
|---------------------|-----------------------------------|------------|
| 🍣 Connect           | : to F12                          |            |
| Enter details for   | the phone number that you want to | o dial:    |
| Country/region:     | United States of America (1)      | 7          |
| Ar <u>e</u> a code: | 610                               |            |
| Phone number:       |                                   |            |
| Connect using:      | COM1                              | •          |
|                     | OK Cano                           | el         |

When the **COM1 Properties** dialog box appears, configure the Port Settings as shown below and click **OK**.

| COM1 Properties                         | ? ×  |
|-----------------------------------------|------|
| Port Settings                           |      |
|                                         | 1    |
|                                         |      |
| Bits per second: 9600                   |      |
| Data bits: 8                            |      |
| Parity: None                            |      |
| Stop bits: 1                            |      |
| Elow control: Xon / Xoff                |      |
|                                         |      |
| <u>A</u> dvanced <u>R</u> estore Defaul | ts   |
|                                         |      |
| OK Cancel 🖉                             | pply |

Click **View**, then click **Font** and configure the font settings as shown. This will insure that the data is presented in the terminal window without wrapping from line to line. You may need to experiment with these settings to obtain an acceptable presentation in the terminal window.

| ont                                                                                                                                                       |                                          |                    | ?)     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|--------------------|--------|
| Eont:<br>Terminal                                                                                                                                         | Font style:<br>Regular                   | <u>S</u> ize:<br>6 | OK     |
| The Courier New     ▲       Fixedsys     The Console       The Miriam Fixed     The Console       The Monospac821 BT     ■       The OCR A Extended     ▼ | Regular<br>Italic<br>Bold<br>Bold Italic | 5<br>9<br>12<br>14 | Cancel |
|                                                                                                                                                           | Sample<br>AaBb° ±2                       |                    |        |
|                                                                                                                                                           | Seript:<br>  DEM/DOS                     | ▼                  |        |
|                                                                                                                                                           |                                          |                    |        |

Click **OK** when finished.

Click **File**, then click **Save As**, and click the **Save** button to store the settings as a HyperTerminal session file named Connect to F12.ht (the filename should automatically appear). You may later place this file on your desktop and simply click it to get this point automatically.

| Save As                            |                                                                             |                               |   |         | ? ×    |
|------------------------------------|-----------------------------------------------------------------------------|-------------------------------|---|---------|--------|
| Savejn:                            | 🔁 HyperTerm                                                                 | inal                          | • | + 🗈 💣 🎟 | •      |
| History<br>Desktop<br>My Documents | COM1_1200<br>COM1_1200<br>COM1_9600<br>COM1_9600<br>Com1-12000<br>COM2_9600 | _081.ht<br>_N81.ht<br>81-b.ht |   |         |        |
| My Computer                        | File <u>n</u> ame:                                                          | Connect to F12.ht             |   | •       | Save   |
| My Network P                       | Save as <u>t</u> ype:                                                       | Session files (*.ht)          |   |         | Cancel |

In order to chart the report data, it must be "captured" in a file and given a name. Click **Transfer** on the menu bar, click **Capture Text**, and then click the **Browse** button. Navigate to a folder and type the name of a file to store the report in (or choose an existing file to append the new report).

| Select Captu          | re File                      |              | ? ×          |
|-----------------------|------------------------------|--------------|--------------|
| Save jn: 🔂            | D12 Report Folder            | - 🗈 💆        | <b>*</b> 🔳   |
|                       |                              |              |              |
|                       |                              |              |              |
|                       |                              |              |              |
|                       |                              |              |              |
|                       |                              |              |              |
| File <u>n</u> ame:    | 2003_0711 (enter your filena | ame instead) | <u>S</u> ave |
| Save as <u>t</u> ype: | Text file (*.TXT)            | •            | Cancel       |
| _                     | -                            | ame instead) |              |

Click the **Save** button to return to the **Capture Text** dialog box. When the **Capture Text** dialog box reappears, click the **Start** button.

| Capture       | ext ? 🗙                                      |
|---------------|----------------------------------------------|
| Folder:       | C:\Projects\D12\Documents\D12 Report Folder\ |
| <u>F</u> ile: | C:\Projects\D12\Documents\D12 Report         |
|               | Start Cancel                                 |

HyperTerminal is now ready to accept a report from the F12 transmitter and save it in a file. Note that data may appear in the terminal window (shown below) if the Connect to F12 session has been run previously, but this data will not appear in the file just opened.

| Connect To D12 - HyperTerminal<br>File Edit View Call Iransfer Help |                    |                  |            | IX |
|---------------------------------------------------------------------|--------------------|------------------|------------|----|
|                                                                     |                    |                  |            |    |
|                                                                     |                    |                  |            |    |
| Connected 1:31:54 Auto detect                                       | Auto detect SCROLL | CAPS NUM Capture | Print echo |    |

#### Starting the Report

Prior to sending a report to the computer, the system clock should be set and the data logger turned on to record at least one sample. In addition, the Log\_Data variable (in the Menu/Setup/Auto-T/Setup menu) should be set to NO if you prefer to see the symbol TEST and not gas concentration values during auto-test.

Configure the communication variables as shown below. Note that 9600 is the highest baud rate common to the F12 transmitter and the Hyperterminal program.



Navigate to the DataLog page and select Print. You will not be allowed access if there are no samples in the log.



Select the first (starting) date. This will automatically re-compute the maximum number of days shown of the report (variable values will most likely differ from yours).



Edit the Days variable if you prefer to reduce the length of the report, otherwise the entire report will be printed.



Select Page\_Setup and configure the Width, Eol, and EolDly variables as shown. The Width variable controls the number of sample columns printed and is settable from 1 to 30. Since the Hyperterminal display is 80 characters wide, set this to 10 columns so that data does not wrap around to the next line. Set Eol for CR/LF, and EolDly to 0.



Escape from Page\_Setup and select Start\_Printing. "Printing" will begin flashing, and you may stop at any time by pressing the Esc key.



The HyperTerminal terminal window should now begin to fill with lines from the report.

| ונ | <u> 2 2 3 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2</u>                                                                                                                                                                | 9 🖻                                                                                                               |                                                             |                                                             |                                                                                                                                              |                                                                                                                                              |                                                                                                                                         |                                                                                                                                |                                                                                                                                |                                                                                                                                |                                                                                                                                |                                                             | <br> |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|------|
|    | 07/13/2006<br>07/13/2006<br>07/13/2006<br>07/13/2006<br>07/13/2006<br>07/13/2006<br>07/13/2006<br>07/13/2006<br>07/13/2006<br>07/13/2006<br>07/13/2006<br>07/13/2006<br>07/13/2006<br>07/13/2006<br>07/13/2006 | 00:10<br>00:20<br>00:30<br>00:40<br>00:50<br>00:60<br>01:00<br>01:10<br>01:20<br>01:30<br>01:40<br>01:50<br>02:00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0 | $\begin{array}{c} 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.04 \end{array}$ | $\begin{array}{c} 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.08 \end{array}$ | $\begin{array}{c} 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.10\\ \end{array}$ | $\begin{array}{c} 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.11 \end{array}$ | $\begin{array}{c} 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.12 \end{array}$ | $\begin{array}{c} 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.12 \end{array}$ | $\begin{array}{c} 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.13 \end{array}$ | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0 |      |
|    | 07/13/2006<br>07/13/2006<br>07/13/2006                                                                                                                                                                         | 02:20                                                                                                             | 0.13                                                        | 0.13                                                        | 0.12                                                                                                                                         | 0.13                                                                                                                                         | 0.12                                                                                                                                    | 0.12                                                                                                                           | 0.12                                                                                                                           | 0.11                                                                                                                           | 0.12                                                                                                                           | 0.11                                                        |      |

When the transmitter has stopped printing (displays Start\_Printing), click **Transfer**, move down to **Capture Text** and click **Stop**. This will close the report file so that it may be opened by another program.

#### Charting with Microsoft Excel

Microsoft Excel can be used to import data log reports and create useful and informative charts.

Start Excel by clicking Start, pointing to Programs, and clicking Microsoft Excel.

When Excel opens, click **File** and then click **Open**. Navigate to the data log report file you wish to chart and click **Open**. Excel will recognize the report as a text file and offer some configuration options.

When the **Text Import Wizard – Step 1 of 3** appears, configure the settings as shown below and click **Next**. (Note that the values in your report file will be different than those shown below.)

| Text Import Wizard - Step 1 of 3                                                                                                                         | × |  |  |  |  |  |  |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|---|--|--|--|--|--|--|--|--|--|--|--|
| The Text Wizard has determined that your data is Fixed Width.<br>If this is correct, choose Next, or choose the data type that best describes your data. |   |  |  |  |  |  |  |  |  |  |  |  |
| Original data type<br>Choose the file type that best describes your data:                                                                                |   |  |  |  |  |  |  |  |  |  |  |  |
| Choose the file type that best describes your data:                                                                                                      |   |  |  |  |  |  |  |  |  |  |  |  |
| Start import at <u>r</u> ow: 1 🚔 File <u>o</u> rigin: Windows (ANSI)                                                                                     | - |  |  |  |  |  |  |  |  |  |  |  |
| Preview of file C:\Projects\D12\Documents\D12 Re\2003_0714.TXT.                                                                                          |   |  |  |  |  |  |  |  |  |  |  |  |
| 107/13/03 00:00 0.00 0.00 0.00 0.00 0.00 0.00 0                                                                                                          |   |  |  |  |  |  |  |  |  |  |  |  |
| <u>2</u> 07/13/03 00:10 0.00 0.00 0.00 0.00 0.00 0.00 0.0                                                                                                |   |  |  |  |  |  |  |  |  |  |  |  |
| <u>3</u> 07/13/03 00:20 0.00 0.00 0.00 0.00 0.00 0.00 0.0                                                                                                |   |  |  |  |  |  |  |  |  |  |  |  |
|                                                                                                                                                          |   |  |  |  |  |  |  |  |  |  |  |  |
| 507/13/03 00:40 0.00 0.00 0.00 0.00 0.00 0.00 0.0                                                                                                        |   |  |  |  |  |  |  |  |  |  |  |  |
| ▲                                                                                                                                                        |   |  |  |  |  |  |  |  |  |  |  |  |
|                                                                                                                                                          |   |  |  |  |  |  |  |  |  |  |  |  |
| Cancel < Back Next > <u>Fi</u> nish                                                                                                                      |   |  |  |  |  |  |  |  |  |  |  |  |

When the **Text Import Wizard – Step 2 of 3** appears, configure the settings as shown below and click **Next**.

| Te | ext Import                                                                                                              | Wizard - | Step | 2 of 3 |      |        |      |                |      |         |          |                | ? X |  |
|----|-------------------------------------------------------------------------------------------------------------------------|----------|------|--------|------|--------|------|----------------|------|---------|----------|----------------|-----|--|
|    | This screen lets you set the delimiters your data contains. You can see how your text is affected in the preview below. |          |      |        |      |        |      |                |      |         |          |                |     |  |
|    | Delimiters                                                                                                              |          |      |        |      |        |      |                |      |         |          |                |     |  |
|    | ✓ Space                                                                                                                 |          |      |        |      |        |      |                |      |         |          |                |     |  |
| C  | Data preview                                                                                                            |          |      |        |      |        |      |                |      |         |          |                |     |  |
|    |                                                                                                                         |          |      |        |      |        |      |                |      |         |          |                | _   |  |
|    | 07/13/03                                                                                                                | 8 00:00  | 0.00 | 0.00   | 0.00 | 0.00   | 0.00 | 0.00           | 0.00 | 0.00    | 0.00     | 0.00           |     |  |
|    | 07/13/03                                                                                                                | 8 00:10  | 0.00 | 0.00   | 0.00 | 0.00   | 0.00 | 0.00           | 0.00 | p.oo    | p.oo     | 0.00           |     |  |
|    | 07/13/03                                                                                                                | 1        |      | 0.00   | 0.00 |        |      | 0.00           | 0.00 | 0.00    | 0.00     | 0.00           |     |  |
|    | 07/13/03                                                                                                                | 1        |      | 0.00   | 0.00 |        |      |                | 0.00 | 0.00    | 0.00     | 0.00           |     |  |
|    | 07/13/03                                                                                                                | 3 00:40  | 0.00 | 0.00   | 0.00 | 0.00   | 0.00 | 0.00           | 0.00 | 0.00    | 0.00     | 0.00           | -   |  |
|    | 4                                                                                                                       |          |      |        |      |        |      |                |      |         |          | •              |     |  |
|    |                                                                                                                         |          |      |        |      |        |      |                |      |         |          |                |     |  |
|    |                                                                                                                         |          |      |        |      | !      | 1    | < De als       |      | March 1 |          | Eine in the    |     |  |
|    |                                                                                                                         |          |      |        |      | Iancel |      | < <u>B</u> ack |      | Next :  | <u> </u> | <u>Fi</u> nist | 1   |  |

When the Text Import Wizard – Step 3 of 3 appears, click Finish.

| Text Import V                   | Vizard -                    | Step  | 3 of 3 |       |       |                               |                                                   |       |       |       |       | ? × |  |  |
|---------------------------------|-----------------------------|-------|--------|-------|-------|-------------------------------|---------------------------------------------------|-------|-------|-------|-------|-----|--|--|
| This screen le<br>the Data Forn | nat.                        |       |        |       |       |                               | Column data format<br>© <u>G</u> eneral<br>© Text |       |       |       |       |     |  |  |
| 'General' co<br>values to da    |                             |       |        |       | r .   | -                             | C Date: MDY                                       |       |       |       |       |     |  |  |
|                                 |                             |       | 1      |       |       | C Do not import column (skip) |                                                   |       |       |       |       |     |  |  |
|                                 | <u>A</u> dvanced            |       |        |       |       |                               |                                                   |       |       |       |       |     |  |  |
| -Data preview                   |                             |       |        |       |       |                               |                                                   |       |       |       |       |     |  |  |
| General                         | Genera                      | Gener | Gener  | Gener | Gener | Gener                         | Gener                                             | Gener | Gener | Gener | Gener |     |  |  |
| 07/13/03                        | 00:00                       | 0.00  | 0.00   | 0.00  | 0.00  | 0.00                          | 0.00                                              | 0.00  | 0.00  | 0.00  | 0.00  |     |  |  |
|                                 |                             | 0.00  | 0.00   | 0.00  | 0.00  | 0.00                          | 0.00                                              | 0.00  | 0.00  | p.oo  | 0.00  |     |  |  |
|                                 |                             |       |        |       |       | 0.00                          |                                                   |       |       | 0.00  | 0.00  |     |  |  |
|                                 |                             |       |        |       |       | 0.00                          |                                                   |       |       | 0.00  | 0.00  |     |  |  |
| 07/13/03                        | 00:40                       | 0.00  | 0.00   | 0.00  | 0.00  | 0.00                          | 0.00                                              | 0.00  | 0.00  | 0.00  | 0.00  |     |  |  |
| •                               |                             |       |        |       |       |                               |                                                   |       |       | •     |       |     |  |  |
|                                 |                             |       |        |       |       |                               |                                                   |       |       |       |       |     |  |  |
|                                 | Cancel < Back Next > Finish |       |        |       |       |                               |                                                   |       |       |       |       |     |  |  |

The report should appear as a spreadsheet resembling the format shown below. Of course the dates, times, and values will be different.

|           | lionanti Faci      |            |            | Sec. 11   |          |              |              |            |             |              |            |                   |       |              |           | . 5 ×            |
|-----------|--------------------|------------|------------|-----------|----------|--------------|--------------|------------|-------------|--------------|------------|-------------------|-------|--------------|-----------|------------------|
|           | E> 20: 3%<br>🛋 🖬 🐴 |            |            |           |          | A 600 (      | হা হা বাহ    |            | · .0        | - B 7        |            |                   | 用 %   |              | àΔ        |                  |
| 1         |                    | • • • •    |            | • • • • • | ε. · · · | 2   <b>1</b> |              |            |             |              |            |                   |       |              | · · · · · |                  |
|           |                    |            | 77-71-5    |           |          |              |              |            |             |              | 🖡 🖕 Secure | « <mark></mark> ) | ∛ 🔟 🍐 | ٠.           |           |                  |
| _         | A                  | _ <b>_</b> | 0          | C         | -        | г            | 6            | -          | _           | .I           | /          |                   | N.    | h.           | 0         | -                |
| 1         | 7/13/03            | 0.00       | ·. (       | . 0       | 0        |              | -            |            | Ċ           |              | 0          | )                 | -     | - 15         |           | 1.1              |
| $\dot{2}$ | 0000               | 1.1        | ĩ          | - Ŭ       | ŭ        | Í            | -            | -          | ĩ           | Ŭ            | Ű          | Ť                 |       |              |           |                  |
| )         | 7/10/00            | 0:22       | C          | 0         | 0        | )            | :            | :          | C           | 0            | 0          | 5                 |       |              |           |                  |
| 1         | 7/13/03            | J.2.       | Ū.         | U         | U        | Ĵ            | _            | _          | i i         | Ű            | U          | Ĵ                 |       |              |           |                  |
| -6        | 4/0211             | 114        | 1          | П         | П        | I            |              |            | 1           | П            | 11         | I                 |       |              |           |                  |
| 6         | 7/13/03            | 0.50       | C          | 0         | 0        | )            |              |            | C (         | 0            | 0          | )                 |       |              |           |                  |
| (2)       | - 70213            | - P        | 1          | 11        | П        | I            |              |            | 1           | П            | 11         | 1                 |       |              |           |                  |
| 0         | 7/10/00            | 1:12       | C          | 0         | 0        | )            |              | -          | C           | 0            | 0          | )                 |       |              |           | 1.7              |
| 2         | 7/13/03            | 1.72       | C          | 0         | 0        | )            |              |            | C           | 0            | 0          | )                 |       |              |           | 1.2              |
| 1         | (/DP11             | l.         | 1          | П         | П        | 1            |              |            | 1           | 11           | 11         | 1                 |       |              |           | 4-0              |
| 11        | 7/10/00            | 1:40       | C          | 0         | 0        | )            | -            | =          | C           | 0            | 0          | )                 |       |              |           | 1.0              |
| 14        | //13/33            | 1.5_       | <u> </u>   | U         | U        |              | -            |            | L           | U            | U          |                   |       |              |           | 4-9              |
| 17        | 7/10/01            | 2.12       | <u> </u>   | ( M)      | 0.04     | 0 11         | 01           |            | 2.12        | 0.12         | 0 10       | 015               |       |              |           | 1.5              |
| 14        | 7/13/03            | 2.12       | I. 4       | C. 4      | 0 14     | 0.14         | 0.13         | I. 4       | <u> </u>    | C 13         | 0.12       | 0.13              |       |              |           | 4-0              |
| 1-        | 0.0243             | <i>P.</i>  |            | 1.13      | 1112     | 1113         | 112          |            |             | 1 11         | 1112       |                   |       |              |           | 4-2              |
| 15        | 7/10/00            | 2:22       | Ξ.,        | C. 2      | 01       | 01           | 0.1          | 1.CF       |             | 0            | 0.09       | 0.29              |       |              |           | 1.3              |
| 17        | 7/13/03            | 2.40       | 2.05       | 0.09      | 01       | 0.02         | 0.05         | 1.0        | 2.08        | 0.08         | 0.08       | 0.27              |       |              |           | $\pm 0$          |
| 17        | 7/13/03            | 3.55       | 11<br>2.06 | C.06      | 0.06     | 0.07         | 1 /<br>5.00  | 17<br>5.02 | 17<br>0.06  | 1 HG<br>C 05 | 0.05       | 11 /<br>0.23      |       |              |           | 1.5              |
|           | 743/13             | 3          | 1.00       | 1.06      | 1116     | 0.57         | 1.4          | 1.65       | 1.00        | 1.12         | 1116       | 0.15              |       |              |           | 1.5              |
| 2<br>71   | 7/10/01            | 1.27       | 7.04       | 1 16      | 0.04     | 0.14         | 1-1          | - 14       | - 01        | Γ 04         | 000        | 0-1               |       |              |           | + 2              |
| 22        | 7/13/03            | 3.32       | 2.03       | C.03      | 0.03     | 0.02         | 5.55         | 1.C        | 2.05        | 0.02         | 0.02       | 0.51              |       |              |           | 1.2              |
|           | 0.0303             | 3:4        | 11         | 1.11      | 005      | 11 12        | 1.1          | 1.67       | 101         | 1.02         | 11         | - 0.21            |       |              |           | +3               |
| 24        | 7/10/00            | 0:55       | Ċ          | 0         | 0        |              |              | · · ·      |             | 0            | 0          |                   |       |              |           | $\pm 0$          |
| 25        | //13/03            | /          | ĩ          | Ŭ         | Ŭ        | Ĩ            | -            | -          | ĩ           | Ŭ            | Ŭ          | Ĩ                 |       |              |           | 1.5              |
|           | 7000               | 217        | ĩ          |           | Ŭ        | Í            | -            | -          | ĩ           | Ŭ            | Ű          | 1                 |       |              |           | $\pm 5$          |
| 27        | 7/13/03            | 4.22       | ć          | ö         | ö        | j            |              | =          | ć           | ö            | ö          | Ś                 |       |              |           | 1.2              |
|           | 713/13             |            | i i        | Ū.        | Ū.       | 1            |              | -          | i i         | - ū          |            | Ĩ.                |       |              |           | 1.2              |
| 27        | 7/10/00            | 4:40       | 0          | 0         | 0        | )            | :            |            | C           | 0            | 0          | )                 |       |              |           | $\mathbb{T}^{2}$ |
| 30        | 7/13/03            | 4.50       | C          | 0         | 0        | )            |              | =          | C C         | 0            | 0          | )                 |       |              |           | 1.0              |
| 1         | () 0211            | 10 N       | 1          | П         | П        | 1            |              |            | 1           | П            | 11         | 1                 |       |              |           | $\mathbb{D}^{n}$ |
|           | 7/10/00            | 5410       | C          | 0         | 0        | )            |              | -          | C           | 0            | 0          | )                 |       |              |           | 1.1              |
| 1         | ▶ № 1,2000,        | 0714 /     |            |           |          |              |              |            |             | (•)          |            |                   |       |              | i - D0    | 20 E             |
|           | o- b 💿             | AutoChapes | - N 141    | പെല       | 4 101 2  | 8 . 4 . 1    | . <u>=</u> = | . 🕂 🗗      | <u>-1.1</u> |              |            |                   |       |              |           |                  |
|           |                    |            |            |           | -        |              | -            |            |             |              |            |                   |       |              |           |                  |
| Rea       | i i i              |            |            |           |          |              |              |            |             |              |            |                   |       | <u> </u> \05 | 1         |                  |

To chart the report, select one full day of data by dragging the mouse cursor over the region to be charted. Notice that this region begins in the time of day column and extends across each of the sample columns.

|             |                        | ool 2003 021                            |            | u           |           |            |               |              |       |       |              |              |       |             |       | . 5 ×   |
|-------------|------------------------|-----------------------------------------|------------|-------------|-----------|------------|---------------|--------------|-------|-------|--------------|--------------|-------|-------------|-------|---------|
| -           |                        | ow proseit T <u>o</u> r<br>I na The ave |            |             |           | A   474 C  | <b>D</b> - 20 |              |       |       |              |              |       |             |       |         |
| 10          | <b>≍ ⊌</b> -           | 1 <b>8 </b> 🖓                           | P I        | 🖬   167 - 1 | ₩ X K     | 2.         | 10 ml 🗤 🕅     |              | ▼ .0  | • B 7 | " <u>-</u> - |              | · ·   | ·   · · · · | 👌 - 🔺 | - :     |
|             |                        |                                         |            |             |           |            |               |              |       |       | 🖡 🖕 Spourt   | w., 🐴        | 2 🖬   | 🗶 🚽         |       |         |
|             | H.                     |                                         |            | 434         |           |            |               |              |       |       |              |              |       |             |       |         |
|             | - A -                  | n                                       | C          | n           | Г         | F          | G             |              |       | - l   | К            | 1            | - M - | N.          | 0     |         |
| 1           | 7/13/03                | 0.00                                    | <u> </u>   | 0           | 0         | )          |               | -            | C .   | 0     | 0            | 2            |       |             |       |         |
| 2<br>0<br>4 | 7/10/00                | 111<br>0:20                             |            | 11          |           |            | -             | -            |       | 0     |              |              |       |             |       |         |
|             | //13/03                | J.22<br>J.22                            | - H        | 0<br>U      | 0<br>U    |            | -             | -            | - N   | Ŭ     | 0<br>U       | , s          |       |             |       |         |
| 3           | - (10/11               | 14                                      |            | - ŭ         | - ŭ       |            | -             | -            |       | - U   | - U          |              |       |             |       |         |
| 6           | 7/13/03                | 0.50                                    | i i        | ö           | ö         | i i        | -             | -            | i i   | ö     | ö            | , i          |       |             |       |         |
| Ť           | 0.3/13                 | 11                                      | Ť.         | ŭ           | ň         | Ť.         | -             | -            | Ť     | ŭ     | Ű.           | - i          |       |             |       |         |
| 0           | 7/10/00                | L:12                                    | C          | 0           | 0         | )          |               | -            | C     | 0     | 0            | )            |       |             |       | 十五      |
| 9           | 7/13/03                | 1.77                                    | C          | 0           | 0         | )          |               |              | C C   | 0     | 0            | 2            |       |             |       | 1.23    |
| 111         | - 700MH                | - P                                     | 1          | 11          | 11        | 1          |               |              | 1     | 11    | 11           | 1            |       |             |       | 1.3     |
| 11          | 7/10/00                | 1:40                                    | C          | 0           | 0         | )          |               | -            | C     | 0     | 0            | 0            |       |             |       | ΤO      |
| 12          | - 7/13/03              | 1.5.                                    |            | U           | U         |            |               |              | L     | U     | U            |              |       |             |       |         |
| 17          | 7/10/01                | 277                                     | - 9        | 90.7        | 0.04      | 0.11       | 01            |              | - 112 | 0.12  | 0.10         | 0.11         |       |             |       | 1.3     |
| 11          | 7/13/03                | 2.12                                    | A          | C. 4        | 0 14      | 0.14       | 0.13          | . 4          |       | C 13  | 0.12         | 0.13         |       |             |       | 430     |
| 1h<br>16    | - 7/13/18<br>- 7/13/99 | 2.<br>2.77                              | - '2       | 1/3<br>C.2  | 110       | 01         | 0.1           |              | -     | 111   | 0.09         | 0.72         |       |             |       |         |
| 16          | 7/13/03                | 2:00                                    | д.<br>С.Сб | 0.09        | 01        | 0.00       | 0.1           | 1.CF<br>1.C7 | 5.06  | (08   | 0.09         | 0.09<br>0.07 |       |             |       | 1.0     |
| 10          | 0.0011                 | 2.42                                    |            | 1.00        | 1014      | 0.00       | 1.7           | 17           | 100   | 1.06  | 0.06         | 0.27         |       |             |       | $\pm 2$ |
| 19          | 7/13/03                | 3.55                                    | 2.CE       | C.06        | 0.06      | 0.07       | 0.02          | 5.CZ         | 0.06  | 0.05  | 0.05         | 0.23         |       |             |       | 1.53    |
| 20          | 7/13/13                | 31                                      | 1.5        | 116         | шь        | 0.05       | 1.4           | 14           |       | 1.12  | шь           | 0.25         |       |             |       | 1.23    |
| 24          | 7/10/00                | 1:27                                    | 7.04       | C 04        | 0.04      | 0.14       | 1             | 7.04         | - 04  | C 04  | 000          | 0.70         |       |             |       | $^{+3}$ |
| 22          | 7/13/03                | 3.32                                    | 2.CE       | C.03        | 0.03      | 0.02       | 0.02          | 2.02         | 2.05  | C 02  | 0.02         | 0.21         |       |             |       | 1.0     |
| 23          | -0.0213                | 314                                     | 1.         | 1 IF        | IIIII     | 11.12      | 1.1           | 1.1          | II.   | 1.111 | 11           | 1            |       |             |       | 179     |
| 23<br>24    | 7/10/00                | D:50                                    | 0          | 0           | 0         | )          | -             | -            | C     | 0     | 0            | 2            |       |             |       | 1.2     |
| 25<br>26    | - 7/13/03              | 1                                       | L L        | U           | U         | J          | -             | -            | L L   | U     | U            | J            |       |             |       | 1       |
| 26          | 400001                 | 211                                     | 1          | П           | П         | 1          |               |              | 1     | П     | 11           | I            |       |             |       | 1 3     |
| 27          | 7/13/03                | 4.22                                    | C          | 0           | 0         | 2          | -             | -            | C     | 0     | 0            | 0            |       |             |       | 1.0     |
| 28          | - //R/18<br>- 7/10/02  | 21<br>11-1                              |            |             |           | -          | -             | -            | -     |       |              |              |       |             |       | $\pm 3$ |
| 29          | 7/10/00                | 4:40                                    | 9          | 0           | 0         |            | -             | -            | 9     | 0     | 0            | 5            |       |             |       | 1.2     |
| 30<br>31    | 7/13/03                | 4.50<br>M                               |            | 0           | 0         |            | -             | -            |       | 0     | 0            |              |       |             |       | $\pm 3$ |
| 32          | 7/10/00                | 5/0                                     | Ċ          | 0           | 0         | - <u>'</u> | -             | -            | Ċ     | ö     | 0            | , j          |       |             |       | +3      |
|             |                        |                                         |            |             |           |            | -             | -            | -     | य ँ   |              | - 1          | _     | _           | - P.C | 20 Ē    |
| -           |                        | -                                       |            |             | 1 1 m l 1 |            |               |              |       | -     |              |              |       |             |       | 1       |
| [ [ [a.     | 9- 🕽 🙆                 | AutoChapes                              | · · · ·    |             | A. UU 🕗   | • = 4 - 4  |               | H U 1        | •     |       |              |              |       |             |       |         |
| Rear        | 1.                     |                                         |            |             |           |            |               |              |       |       | Sun 19       | 0 07202-     |       | \U5         | 1     |         |

After selecting the region, click Insert and then Chart (or click the Chart icon directly from the toolbar).

Chart Wizard - Step 1 of 4 - Chart Type ? × Standard Types | Custom Types | Chart type: Chart sub-type: Column ٠ 📕 Bar 🕂 Line 🥭 Pie 🔆 XY (Scatter) 🔥 Area 🙆 Doughnut 🎪 Radar 🕭 Surface 🔋 Bubble Stock -Clustered Column. Compares values across categories. Press and Hold to <u>Vi</u>ew Sample 2 Cancel < Back Next ><u>Fi</u>nish

When the Chart Type dialog appears, click on Column, and click Next.

| Chart Wizard | - Step 2 of 4 - Chart Source Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ? X      |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Data Range   | Series                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |
| batartango   | Series                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1        |
| 0.16 -       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |
| 0.14         | Series1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |
| 0.12         | Series2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |
| 0.1          | Series4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |
| 0.08         | Series5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |
| 0.06         | Series6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |
| 0.04         | Series7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |
| 0.02 -       | 🗆 Series8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |
| 0 +          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |
| 8            | 101=2=0<br>001=2=0<br>001=2=0<br>001=2=0<br>001=2=0<br>001=2=0<br>001=2=0<br>001=2=0<br>001=2=0<br>001=2=0<br>001=2=0<br>001=2=0<br>001=2=0<br>001=2=0<br>001=2=0<br>001=2=0<br>001=2=0<br>001=2=0<br>001=2=0<br>001=2=0<br>001=2=0<br>001=2=0<br>001=2=0<br>001=2=0<br>001=2=0<br>001=2=0<br>001=2=0<br>001=2=0<br>001=2=0<br>001=2=0<br>001=2=0<br>001=2=0<br>001=2=0<br>001=2=0<br>001=2=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001=0<br>001<br>001 |          |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _        |
| Data range:  | ='2003_0714'!\$B\$1:\$L\$144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>N</b> |
| Editariangoi | <u> -2003_0714150511515144</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u> </u> |
| Series in:   | C Rows                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |
| 201102 1111  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |
|              | Columns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |
| 2            | Cancel < Back Next > Finis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ;h       |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |

When the **Chart Source Data** dialog appears, click **Next**.

| Chart Wizard - Step                                                                                                                      | 3 of 4 - Chart Optio                                             | ons ?                                | × |
|------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------|---|
| Titles Axes                                                                                                                              | Gridlines Legend                                                 | Data Labels Data Table               | 1 |
| <ul> <li>☐ Show legend</li> <li>Placement</li> <li>○ Bottom</li> <li>○ Corner</li> <li>○ Top</li> <li>④ Right</li> <li>○ Left</li> </ul> | 0.16<br>0.14<br>0.12<br>0.1<br>0.08<br>0.06<br>0.04<br>0.02<br>0 |                                      |   |
| 2                                                                                                                                        | Cancel                                                           | < <u>B</u> ack Next > <u>Fi</u> nish |   |

When the Chart Options dialog appears, click off the Show legend option, and click Next.

When the **Chart Location** dialog appears, click the **as new sheet** radio button and enter the name of a new sheet to store the chart in. Alternately, you may click the **As object in** radio button to place the chart onto the sheet you have just created.

| Chart Wizard   | I - Step 4 of 4 - Cha   | irt Location    | ? ×  |
|----------------|-------------------------|-----------------|------|
| Place chart: - |                         |                 |      |
|                | • As new <u>s</u> heet: | Chart 2003_0714 |      |
|                | C As <u>o</u> bject in: | 2003_0714       | •    |
| 2              | Cancel                  | < Back Next >   | nish |

If you have previously clicked the **As new sheet** radio button, the chart will appear on the new sheet named above. You may now move between the new sheet and the old sheet by clicking the sheet tabs that appear just below the chart display.



If you have previously clicked the **As object in:** radio button, the chart will appear on the existing sheet.

|               |                      | od 2003 02       |            |             |               |          |         |       |        |          |          |      |         |            | - i ×     |
|---------------|----------------------|------------------|------------|-------------|---------------|----------|---------|-------|--------|----------|----------|------|---------|------------|-----------|
| ] <b>#</b> 1  | E> Co 🕫              | w paset To       | med Door y | diar: Encos | Tap           |          |         |       |        |          |          |      |         |            | _ 5 ×     |
|               | 🛋 🖬 🖨                | i a 🗈 💝          | 1 a in 1   | 🛯 (e) - 👰   | $\Sigma$ fr : | 원 🛍 🕄    | 20 A la |       | • .0 • | B 7      | III 🖃 D  |      | 〒 %  卓  | + 👌        | - 🕰 - 👘 🔅 |
| -             |                      |                  |            |             |               |          |         |       |        | <b>.</b> | 🖕 Socuro | v 🐴  | 🖉 🔟 🙇 . |            |           |
| 0             | ran Aras             |                  |            |             |               |          |         |       |        | 1.1      |          |      | ~ =     |            |           |
|               | A -4-A               | <u> </u>         | 0          | C.          | -             | Г        | 6       |       |        | J        | 4        |      | N I     | N.         | 0 E       |
| 1             | 7/13/03              | 0.00             | с.<br>С    | 0           | 0             | ,        |         | -     | C      | 0        | . 0      | 2    | -1      |            |           |
| 2             | 0.04.11              | 11               | ī          | ŭ           | Ŭ.            | Ĩ        | -       | -     | ī      | - ŭ      | - Ŭ      | Ĩ    |         |            |           |
| )             | 7/10:00              | 0:20             | C          | 0           | 0             | )        |         |       | C      | 0        | 0        | )    |         |            |           |
| -2            | - 7/13/03            | J.c.             | L L        | U           | U             | J        | -       | -     | ι      | U        | U        | J    |         |            |           |
| $-50^{\circ}$ | ()0411               | 14               | 1          | н           | - 11          | 1        |         |       | 1      | П        | 11       | - 1  |         |            |           |
| 6             | 7/13/03              | 0.50             | C          | 0           | 0             | )        |         | -     | C      | 0        | 0        | )    |         |            |           |
| 1             | - 703/13             | - P              | 1          | П           | 11            | 1        | -       |       | 1      | 11       | 11       | I    |         |            |           |
| 0             | 7/10/00              | 1:12             | C          | 0           | 0             | )        |         |       | C      | 0        | 0        | _ 2  |         |            | 1.3       |
| 2             | 7/13/03              | 1.77             | C          | —ſ.,        |               |          |         | -     |        |          |          |      |         |            |           |
| 1             | 7/10/11<br>7/10/00   | 1·               | 1          | 0.12        | 1             |          |         |       |        |          |          | I —  |         |            |           |
| 11            | - 713/00<br>- 713/03 | 1:40             | C I        | 1.12        |               |          |         |       |        |          |          | 1    |         |            | 1.2       |
| 14            | 7/13/03              | 1.5.             | ι<br>Γ     | rd 2/2      |               |          |         |       |        |          |          | 010  |         |            |           |
| 14            | 7/13/03              | 2.12             | . 4        |             |               |          |         |       |        |          |          | 0.13 |         |            | 1.23      |
| 14            | 01303                | - <u>-</u> -<br> |            | <u> </u>    |               |          |         |       |        |          |          | 1111 |         |            |           |
| 15            | 7/10/00              | 2:22             | 1.         | C I         | _             |          |         |       |        |          |          | 0.29 |         |            |           |
| 17            | 7/13/03              | 2.45             | Ē.cs       | - Čđ        |               |          |         |       |        |          |          | 0.27 |         |            | 1.2       |
| ï             | 0.0401               | 21               | 11         |             |               |          |         |       |        |          |          | 11 / |         |            |           |
| 12            | 7/13/03              | 3.55             | 2.CE       | c.q 0.54    |               |          |         |       |        |          |          | 0.23 |         |            | 1.20      |
| 1             | 7/13/13              | 37               | 1.7        | - ii]       |               |          |         |       |        |          |          | 0.7  |         |            | - 1.23    |
| -71           | 7/10/00              | 3.27             | 7.04       | - 17        |               |          |         |       |        |          |          | 0.71 |         |            | 3         |
| 22            | 7/13/03              | 3.30             | 0.05       | c.d T       | ≣ 8           | ₹ ≣ 8    | 238     | ন ৪   | F F 8  | 8 ह 8    | 8 2      | 0.01 |         |            | 1.0       |
| 10            | - 703/13             | 41               | 1.         | 11          | = ''          |          | 7 D C   |       |        |          | A 5      | 1    |         |            | - T 3     |
| - 34          | 7/1000               | 0:55             | C          |             |               |          |         |       | • •    |          |          | - 2  |         |            | - E X     |
| 25            | - //13/03            | /                | L          | D           | 0             | J        | -       |       | L      | U        | U        | - 1  |         |            |           |
|               | 4/02/11              | 411              |            | 11          |               | 1        | _       | -     | 1      | <u> </u> |          | 1    |         |            | - 1 3     |
| -37           | 7/13/03              | 4.20             | C C        | 0           | 0             | 2        | 2       | -     | C      | 0        | 0        | С    |         |            | 1.0       |
| 10            | - 710213<br>7.10 PB  |                  | 1          |             | - 11          |          | -       | -     | 1      |          |          |      |         |            |           |
|               | 7/10/00              | 4:40             | C C        | 0           | 0             | )        | Ξ       | Ξ     | C      | 0        | 0        | 2    |         |            | 1.53      |
| 32            | 7/13/03              | 4.50             | <u>c</u>   | 0           | 0             | <u> </u> | -       | -     | c      | 0        | 0        | 2    |         |            |           |
| 1             | 7/10/00              | - 12<br>5/12     | 1<br>C     | 0           | 0             | )        | -       | -     | 1<br>C | 0        | 0        | 2    |         |            |           |
|               |                      |                  | с –        | 0           | 0             | ,        | -       | -     |        | -        | U        | - 1  |         |            |           |
|               | ► N \.2003           | -                |            |             | l. e          |          |         |       | - I -  |          |          |      |         |            | DOM:      |
| E [a          | o- b 🛞               | AutoChapes       | 9 N (4 E   | ः न 🖌       | . 🗶 🔁         | - 🔟 - 🛆  | · ≡ ⇔ † | 7 🖸 🗑 | 1.     |          |          |      |         |            |           |
| Rea           | 1,                   |                  |            |             |               |          |         |       |        |          |          |      |         | <u>\UM</u> |           |
|               |                      |                  |            |             |               |          |         |       |        |          |          |      |         |            |           |

Finally, click File, then Save to store the chart.

Once the chart has been created, you may wish to rescale it, title it, and print it. These features are detailed in Microsoft Excel Help and are beyond the scope of this document.